• Title/Summary/Keyword: formation temperature

Search Result 5,152, Processing Time 0.037 seconds

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.

HCN and HNC abundance ratio toward three different phases of massive star formation

  • Jin, Mi-Hwa;Lee, Jeong-Eun;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2013
  • In the process of star formation, the density and temperature of associated material, which are the physical conditions for the molecular chemistry, vary dramatically. As a result, the connection between physical and chemical conditions has been used to trace the evolutionary stages in star formation. One chemical tracer for the physical conditions in star forming material is the [HCN]/[HNC] abundance ratio since the ratio strongly depends on the kinetic temperature in molecular clouds. Here we investigate the [HCN]/[HNC] abundance ratios in objects related to the massive star formation. For the investigation, we carried out $H^{13}CN$ and $HN^{13}C$ line observation toward objects in three different evolutionary stages of massive star formation: Infrared dark clouds (IRDCs), High-mass protostellar object (HMPOs), and Ultra-compact HII regions (UCHIIs). According to our observational results, both $H^{13}CN$ and $HN^{13}C$ lines have been detected toward 19 IRDCs, 25 HMPOs, and 31 UCHIIs. We will discuss about the [HCN]/[HNC] abundance ratios in different evolutionary stages of massive star formation and associate the results with the physical conditions of the targets.

  • PDF

Effect of Freezing of Paste on the Formation of Chou (반죽의 냉동처리가 Chou 형성에 미치는 효과)

  • Lee, Sun-Ok;kim, Myoung-Ae
    • Korean journal of food and cookery science
    • /
    • v.10 no.4
    • /
    • pp.405-411
    • /
    • 1994
  • This study was conducted to know the quality of chou made with flour pastes which were stored at different conditions of quick freezing, slow freezing, cold and room temperature. Also, this study included investigation of the chou properties such as expansion, sensory evaluation, degree of gelatinization, and physical and structural properties of paste were observed. There were not significant differences m diameter, height, volume, appearance, hollow formation, and sensory evaluation between the chou made with the paste stored at freezing condition and chou directly baked after pasting. Quick and slow freezing storages did not significantly affect the properties of chou, and the same results were obtained among the chou made with pastes thawed at room temperature and in microwave ovenrange. The chou of pastes stored at room temperature and in microwave ovenrange. The chou of pastes stored at room temperature and stored in refrigerator showed lowed expansion and value of sensory evaluation than those of frozen pastes. The paste stored at room temperature had the lowest hardness and viscosity compared with the other storage conditions. According to the observation of light microscope. the lipid bodies of the paste of freezing storage smaller those of the room temperature and refrigerator storage. The expantion of chou made with paste stored at room temperature was greatly decreased due to the high coalescence of lipid bodies, and also the paste components such as lipid, starch granule gluten at room temperature had inferior dispersion condition. The general tendency of the degree of gelatinization of chou were low in all treatments of paste. The values were 23.5%~46.0% in freezing, 77.3% in room temperature, 68.7% in directly baked after pasting, and 61.0% in cold storage, respectively. The formation and the taste of chou made with frozen paste were similar to those of chou directly baked pasting.

  • PDF

A Basic Study on Burr Formation of Micro Cutting Process with the Ferrous Metal at tow Temperature (철계 금속 마이크로 절삭 가공시 저온 환경에서의 버 발생에 관한 기초연구)

  • Kim, G.H.;Kim, D.J.;Sohn, J.I.;Yoon, G.S.;Heo, Y.M.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.166-171
    • /
    • 2009
  • In this paper, a basic study on micro cutting process with SM20C at low temperature environment was performed. In macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this possibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed.

Effects of MWCNT Nucleating Agent on the Formation Reaction of Rigid Polyurethane Foams

  • Ahn, WonSool;Lee, Joon-Man
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • A study of the effects of MWCNT as a nucleating agent on the formation reactions of the rigid polyurethane foams (RPUFs) was carried out. Sample PUFs, formulated with grease-type master batch of MWCNT/surfactant, were fabricated by free-rising method. Temperature changes with time during foaming process were measured using a digital thermometer. RPUF foaming process was observed to undergo 2-step processes with temperature inflection around 60 sec after the start of reaction, and then reached slowly the max. temperature. While the max. temperature of neat PUF was measured as ca. $120^{\circ}C$, that of the samples with MWCNT were as higher value as ca. $130^{\circ}C$, and, even the time to reach that temperature was reduced by about 15 sec. Average cell size of PUF samples decreased from 185.1 for the neat PUF to $162.9{\mu}m$ for the sample of 0.01 phr of MWCNT. As the result, it was considered that MWCNT in RPUF foaming process could play a roll both as a nucleating agent and as a catalyst.

Delineation of water seepage in a reservoir embankment from ground temperature measurements (지온탐사에 의한 저수지 제방의 누수 조사)

  • 박삼규
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.169-175
    • /
    • 1999
  • The water leakage of reservoir embankment usually occurs through water vein, which gives little influence on the embankment in a normal state. However, the embankment can be destroyed when the water level of reservoir increases with heavy rain in summer. Investigating the water vein and its path is therefore very important from the viewpoint of disater prevention and embankment protection. This paper presents survey results of one-meter-depth ground temperature and multi-point temperature logging in an embankment in Japan to delineate water veins and permeable formations. Four water veins have been predicted in the embankment by comparing measured one-meter-depth ground temperatures with the background ones which have no effect of water vein. The multi-point temperature logging was carried out in the borehole drilled at one of the predicted water veins. Depth and thickness of the permeable formation in the borehole can be determined from temperature restoration ratios with elapsed time. From these results we can find that the water leakage of reservoir embankment mainly occurs in sandy soil formation in the embankment.

  • PDF

The Effect of Operating Conditions on the Frost Formation in a Vertical Plate at a Low Temperature (저온 수직평판에서 착상에 대한 운전조건의 영향)

  • 이관수;이태희;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3305-3314
    • /
    • 1994
  • In this study, the influence of a frost formed on the vertical plate for different operating conditions(the temperature of the air, the humidity of the air, the velocity of the air, and the temperature of the cooling plate) is investigated. The performance of the heat exchanger is examined by introducing a parameter such as the energy transfer resistance. Correlations which relate frost density, frost thickness and energy transfer resistance to Reynolds number, air temperature and humidity, and cooling plate temperature are developed. Static pressure drop and air flow rate are expressed as a function of free flow area of air.

Effect of Temperature on the Conidium Germination and Appressorium Formation of Colletotrichum acutatum, C. dematium and C. gloeosporioides (Colletotrichum acutatum, C. dematium 및 C. gloeosporioides의 분생포자발아(分生胞子發芽) 및 부착기(附着器) 형성(形成)에 미치는 온도(溫度)의 영향)

  • Lee, Du-Hyung
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 1993
  • The optimum temperature for germination of conidia and germ tube elongation were between $20\;and\;30^{\circ}C$ in C. dematium and C. gloeosporioides. Appressoria were fairly formed well at $20^{\circ}C$ despite the delay of conidial germination. At $30^{\circ}C$, both the germination and germ tube elongation are favored, but appressoria were poorly detected to be formed. In C. acutatum, the optimum temperature for germination of conidia was from $20\;to\;30^{\circ}C$, but at $25^{\circ}C$, germ tube elongation are accelerated. The conidia become septate and one or both doughter cells become conidiogenous instead of producing germ tubes and a secondary conidia produced, resulting in an arborescent type of connected conidia. Appressoria are infrequently formed by germinating conida. At $20\;to\;25^{\circ}C$ was the optimum for appressorium formation. But conidia that germinated at $30^{\circ}C$ seemed to lose the ability to form appressoria. The relation of temperature to germination of conidia and appressorium formation in Colletotrichum acutatum, C. dematium and C. gloeosporioides are discussed.

  • PDF

The Effects of Carbon Dioxide as Additives on Soot Formatio in Jet Diffusion Flames (제트확산화염에서 이산화탄소의 첨가가 매연생성에 미치는 영향)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.170-175
    • /
    • 2010
  • The effect of carbon dioxide addition on soot formation was investigated in jet diffusion flames in coflow. Flame temperature were measured with R-type thermocouple and the boundary temperature between blue and yellow flame was confirmed. Light-extinction method was introduced for the relative soot density (1-I/$I_0$) in the in-flame region. He-Ne laser with wave length at 632.8 nm was used for the light source, and the signal attenuated by absorption and scattering was detected directly. Oxidizer velocity effect on soot formation was studied to know that the thermal influence for soot formation. The results showed that the temperature of both blue and yellow flame were decreased according to the dilution of carbon dioxide but boundary temperature was nearly constant. The relative soot density was lower when carbon dioxide was added in oxidizer stream and oxidizer velocity increased. These were caused by the reduction of flame temperature and shorter residence time for soot growth. Also carbon dioxide addition enhanced the instability of jet flames like flickering, so the flame length was a little longer than pure ethylene/air flame.

A Case Study on Causes and Characteristics of the Local Snowstorm in Jeju Island During 23 January 2016 (2016년 1월 23일 제주도에 일어난 국지규모 폭설의 원인과 특징에 관한 사례 연구)

  • Yeo, Ji-Hye;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.177-188
    • /
    • 2017
  • The development mechanisms of an unusual heavy snowfall event, which occurred in the coast of Jeju Island on 23 January 2016 were investigated through a thermodynamic approach. The formation of heavy snowfall was attributed to the enhanced thermal convection in two ways. First, the convection was enhanced by the air-sea temperature difference between the cold air advection in low-troposphere associated with the strengthening of the Siberian High and abnormal warm sea surface temperature, which is $1{\sim}2^{\circ}C$ higher than normal year over the Yellow Sea (YS). Second, the convective instability was increased by the vertical temperature gradient between the 7 days-sustained cold air advection in low-troposphere and the abrupt cold air intrusion in mid-troposphere induced by the southward shift of a cold cut-off vortex ($-45^{\circ}C$) at the formation stage. Compared to the twelve hours prior to the formation, the low-level moisture increased by 5% through the moisture supply from the YS, and the air-sea temperature difference increased from $18.5^{\circ}C$ to $28.5^{\circ}C$. Furthermore, the upward sensible (latent) heat flux increased 1.5 (1.2) times over the YS before the twelve hours prior to the formation. Thereafter, the sustained moisture supply and upward turbulent heat flux helped to maintain the snowstorm.