• Title/Summary/Keyword: formation: Galaxy

Search Result 446, Processing Time 0.038 seconds

A Feature of Stellar Density Distribution within Tidal Radius of Globular Cluster NGC 6626 in the Bulge Direction

  • Chun, Sang-Hyun;Lim, Dong-Wook;Kim, Myo-Jin;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • We have investigated the spatial configuration of stars within the tidal radius of metal poor globular cluster NGC 6626 in the bulge direction. Data were obtained in near-IR J,H,Ks bands with wide-field ($20'\times20'$) detector, WIRCam at CFHT. To trace the stellar density around target cluster, we sorted cluster's member stars by using a mask filtering algorithm and weighting the stars on the color-magnitude diagram. From the weighted surface density map, we found that the stellar spatial distributions within the tidal radius appear asymmetric and distorted features. Especially, we found that more prominent over-density features are extending toward the direction of Galactic plane rather than toward the directions of the Galactic center and its orbital motion. This orientation of the stellar density distribution can be interpreted with result of disk-shock effect of the Galaxy that the cluster had been experienced. Indeed, this over-density feature are well represented in the radial surface density profile for different angular sections. As one of the metal poor globular clusters with extended horizontal branch (EHB) in the bulge direction, NGC 6626 is kinematically decoupled from the normal clusters and known to have disk motion of peculiar motion. Thus, our result will be able to add further constraints to understand the origin of this cluster and the formation of bulge region in early universe.

  • PDF

Faint Dwarf Galaxies along the Leo Large Scale HI Gas Ring

  • Park, Hyuk;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • The Leo ring in the M96 group is unique in its morphology and size among the intergalactic gas features found in nearby universe. Its ring-like structure of 200 kpc on diameter appears to be orbiting around the M105-NGC 3384 pair with $1.67{\times}109\;M{\odot}$ of HI gas. While the origin of the ring - whether it is primordial or tidally stripped - is yet unclear, the optical and gas properties of dwarf galaxies associated with the gas ring help us to understand the formation process of this large scale intergalactic HI cloud. At the first step, we present the optical catalog of dwarf galaxy candidates in the Leo ring using deep optical images with MegaCam on the CFHT. Image convolution method is used in order to detect very faint dwarf galaxies. Comparing the ALFALFA HI data from the literature, we have identified that 4 dwarf candidates coexist with HI clumps. There are also 27 HI dwarfs with no optical counterpart and 12 optical dwarfs with no HI clump. In this work, we probe the optical and global gas properties of these dwarfs.

  • PDF

Spatial Configuration of Stars around Metal-Poor Globular Clusters in the Galactic Bulge

  • Han, Mi-Hwa;Chun, Sang-Hyun;Chang, Cho-Rhong;Jung, Mi-Young;Lim, Dong-Wook;Sohn, Young-Jong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.30.1-30.1
    • /
    • 2009
  • We present extra-tidal features of spatial configuration of stars around three metal-poor globular clusters (NGC 6273, NGC 6266, NGC 6681) located in the Galactic bulge. The accurate wide-field photometric data were obtained in BVI bands with the MOSAICII camera at CTIO Blanco 4m telescope. The derived color-magnitude diagrams (CMDs) covered a total $71'\times71'$ area including a cluster and its surrounding field outside of the tidal radius of the cluster. Applying the statistical technique of the CMD-mask algorithm, we minimized the field star contaminations on the obtained CMDs and chose properly the cluster's member stars. On the spatial stellar density maps around the target clusters, we found overdensity features beyond the tidal radii of the clusters. We also found that the radial density profiles of the clusters show departures from the best-fit King model for the outer region of clusters. The results add further observational evidence that the observed metal-poor bulge clusters would be originated from accreted satellite systems, indicative of the merging scenario of the formation of the Galaxy.

  • PDF

A Survey for Globular Clusters in Cosmic Void Galaxies

  • Sohn, Jubee;Lee, Myung Gyoon;Ko, Youkyung;Lim, Sungsoon;Park, Hong Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.2-45.2
    • /
    • 2014
  • We carry out the first survey for globular clusters (GCs) of three galaxies in cosmic voids using Hubble Space Telescope (HST) Advanced Camera for Survey archival F606W and F814W images. While all sample galaxies are classified as early-type galaxies based on ground-based imaging, the high resolution HST images reveal that they are actually spiral galaxies. We identify the point sources with red colors typical for GCs as GC candidates in the color-magnitude diagrams. As a result, we find a significant number of GC candidates. The spatial and radial distribution of GCs show central concentration on each galaxy region. Their mean colors are similar to that of the Milky Way and M31 GCs. The void GCs are somewhat bluer by, and than cluster and field GCs in early-type galaxies with similar luminosity to our samples, but the discrepancy is not significant. We also estimate the specific frequencies of GCs in these galaxies and the values are consistent with those in field and cluster galaxies with similar luminosity. From these results, we suggest that the formation process of void GCs is similar to that of GCs in other environments. The further implications will be discussed.

  • PDF

STUDY OF MILLI-JANSKY SEYFERT GALAXIES WITH STRONG FORBIDDEN HIGH-IONIZATION LINES USING THE VERY LARGE ARRAY SURVEY IMAGES

  • LAL, DHARAM V.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.399-412
    • /
    • 2015
  • We study the radio properties at 1.4 GHz of Seyfert galaxies with strong forbidden highionization lines (FHILs), selected from the Sloan Digital Sky Survey - a large-sized sample containing nearly equal proportion of diverse range of Seyfert galaxies showing similar redshift distributions compiled by using the Very Large Array survey images. The radio detection rate is low, 49%, which is lower than the detection rate of several other known Seyfert galaxy samples. These galaxies show low star formation rates and the radio emission is dominated by the active nucleus with ≤10% contribution from thermal emission, and possibly, none show evidence for relativistic beaming. The radio detection rate, distributions of radio power, and correlations between radio power and line luminosities or X-ray luminosity for narrow-line Seyfert 1 (NLS1), Seyfert 1 and Seyfert 2 galaxies are consistent with the predictions of the unified scheme hypothesis. Using correlation between radio and [O III] λ 5007 Å luminosities, we show that ∼8% sample sources are radio-intermediate and the remaining are radio-quiet. There is possibly an ionization stratification associated with clouds on scales of 0.1-1.0 kpc, which have large optical depths at 1.4GHz, and it seems these clouds are responsible for free-free absorption of radio emission from the core; hence, leading to low radio detection rate for these FHIL-emitting Seyfert galaxies

CALIBRATION PROCESS OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 검교정)

  • Lee, D.H.;Nam, U.W.;Kim, G.H.;Pak, S.;Zemcov, M.;Bock, J.J.;Battle, J.;Sullivan, I.;Mason, P.;Tsumura, K.;Matsumoto, T.;Matsuura, S.;Renbarger, T.;Keating, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.169-175
    • /
    • 2007
  • The international cooperation project CIBER (Cosmic Infrared Background ExpeRiment) is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. Currently, all the subsystems have been built, and the integration, testing, and calibration of the CIBER system are on process for the scheduled launch in June 2008.

The Demographics of galactic bulges in the SDSS database

  • Kim, Keunho;Oh, Sree;Jeong, Hyunjin;Aragon-Salamanca, Alfonso;Smith, Rory;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2016
  • We present a new database of our two-dimensional bulge-disk decompositions for 14,482 galaxies drawn from SDSS DR12 in order to examine the properties of bulges residing in the local universe (0.005 < z < 0.05). We performed decompositions in g and r bands by utilizing the GALFIT software. The bulge colors and bulge-to-total ratios are found to be sensitive to the details in the decomposition technique. The g-r colors of bulges derived are almost constantly red regardless of bulge size except for the bulges in the low bulge-to-total ratio galaxies (approximately $B/T_r{\leq}0.3$). Bulges exhibit similar scaling relations to those followed by elliptical galaxies, but the bulges in galaxies with lower bulge-to-total ratios clearly show a gradually larger departure in slope from the elliptical galaxy sequence. The scatters around the scaling relations are also larger for the bulges in galaxies with lower bulge-to-total ratios. Both the departure in slopes and larger scatters are likely originated from the presence of young stars. While bulges seem largely similar in optical properties to elliptical galaxies, they do show clear and systematic departures as a function of bulge-to-total ratio. The stellar properties and perhaps associated formation processes of bulges seem much more diverse than those of elliptical galaxies.

  • PDF

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

QUANTIFYING DARK GAS

  • LI, DI;XU, DUO;HEILES, CARL;PAN, ZHICHEN;TANG, NINGYU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.75-78
    • /
    • 2015
  • A growing body of evidence has been supporting the existence of so-called "dark molecular gas" (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from Av~0.05-2, roughly corresponding to the self-shielding threshold of $H_2$ and $^{13}CO$. To quantify DMG relative to $H{\small{I}}$ and CO, we are pursuing three observational techniques; $H{\small{I}}$ self-absorption, OH absorption, and THz $C^+$ emission. In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic "absorption mapping" by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.

THE CHEMICAL PROPERTIES OF PG QUASARS

  • Shin, Jaejin;Woo, Jong-Hak;Nagao, Tohru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2012
  • Metallicity is an important tracer of star formation in galaxy evolution. Based on the flux ratios of broad emission lines, AGN metallicity has shown a correlation with AGN luminosity. However, it is not clear what physical parameter drives the observed correlation. Using a sample 69 Palomar-Green QSOs at low-z (z<0.5), we determine BLR gas metallicity from emission line flux ratios, i.e., N V1240/C IV1549, (Si IV1398+O IV1402)/C IV1549 and N V1240/He II1640 based on the UV spectra from the HST and IUE archives. We compare BLR gas metallicity with various AGN properties, i.e., black hole mass, AGN luminosity and Eddington ratio, in order to investigate physical connection between metal enrichment and AGN activity. In contrast to high-z QSOs, which show the correlation between metallicity and black hole mass, we find that the metallicity of low-z QSOs correlates with Eddington ratio, but not with black hole mass, suggesting that metallicity enrichment mechanism is different between low-z and high-z.

  • PDF