• 제목/요약/키워드: formaldehyde emissions

검색결과 58건 처리시간 0.016초

메탄올자동차 배기배출물중의 미연메탄올 및 포름알데하이드 측정 (Measurement of unburned methanol and formaldehyde emissions from methanol fueled vehicles)

  • 명차리;한상순
    • 오토저널
    • /
    • 제13권5호
    • /
    • pp.89-94
    • /
    • 1991
  • In the quantitative analysis of oxygenated exhaust emissions (unburned methanol, formal- dehyde) from methanol fueled vehicles, the oxygen contained in oxygenated exhaust gases lowers the FID (Flame Ionization Detector) response factor of conventional THC analyzer and leads to erroneous HC reading. For correct measurement of various HCs including oxygenated HCs emitted from FFV(Flexible Fuel Vehicle), first of all, the measurement technique of real HC emissions should be established. GC and HPLC-DNPH measuring methods specified by the EPA are used in this paper to analyze unburned methanol and formaldehyde components in the exhaust emissions. In emission test of FFV, unburned methanol and formaldehyde are emitted mostly during cold transient period, and it is shown that formaldehyde emission level is proportional to engine displacements. In view of the HC emission level, vehicle using M85 has 40% advantage over gasoline-fueled vehicle in OMHCE and has a good potential of a low emission vehicle.

  • PDF

자동차용 M-90 스파크 점화기관의 배기가스 정화특성 (Exhaust gas purification characteristics of M-90 fueled SI engine for passenger car)

  • 김재휘;홍영표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.43-49
    • /
    • 1996
  • With the recent interest in methanol as a SI engine fuel, aldehyde emissions have become a greater concern. A M-90 fueled passenger car was operated in a chassis dynamometer using FTP 75 driving cycle to examine formaldehyde emissions. Formation process of aldehyde and methods to reduce them are discussed in this paper for a SI-engine passenger car operating by M-90. Aldehyde emissions have been found to be 3 to 7 times higher from M-90 than from gasoline, while CO, NOx, THC are as low or lower than gasoline. Noble metal compositions appeared to play a role in formaldehyde and unburned methanol emission performance. For example, catalyst Pd showed better reduction of both formaldehyde and methanol than catalyst Pt. however, emission rates of formaldehyde and methanol for catalyst Pt were relatively similar to catalyst Pt/Rh.

  • PDF

Environment-friendly Adhesives for Fancy Veneer Bonding of Engineered Flooring to Reduce Formaldehyde and TVOC Emissions

  • Kim, Sumin;Kim, Hyun-Joong;Xu, Guang Zhu;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.58-66
    • /
    • 2007
  • The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring. Urea-formaldehyde (UF)-tannin and melamine-formaldehyde (MF)/PVAc hybrid resin were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. Wattle tannin powder (5 wt%) was added to UF resin and PVAc (30 wt%) to MF resin. These adhesive systems showed better bonding than commercial UF resin with a similar level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial UF resin, UF-tannin and MF/PVAc hybrid resin. By desiccator method, the formaldehyde emission level of UF resin showed the highest but was reduced by replacing with UF-tannin and MF/PVAc hybrid resin. MF/PVAc hybrid satisfied the $E_1$ grade (below $1.5mg/{\ell}$). VOC emission results by VOC analyzer were similar with the formaldehyde emission results. TVOC emission was in the following order: UF > UF-tannin > MF/PVAc hybrid resin.

파티클보드의 열압으로부터 포름알데히드 배출량 조사 (Examination of Formaldehyde Emissions from the Hot-Pressing of Particleboard)

  • 오용성;곽준혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.33-39
    • /
    • 2001
  • 포름알데히드와 요소의 몰비가 다른 2종류의 요소수지 접착제를 이용하여 접착제 첨가량과 열압시간 등 여러 조건에서 실험실 파티클보드를 열압하는 동안 배출되는 가스를 중류수에 용해 포집하고, 이렇게 얻어진 용액으로부터 포름알데히드 배출량을 미국 National Institute of Occupational Safety and Health (NIOSH) 3500의 방법에 의해 분석 비교하였다. 평가된 결과는 파티클보드를 열압하는 동안 배출되는 가스 중에서 포름알데히드량은 요소수지의 종류, 접착제 첨가량과 열압시간에 의해서 영향을 받는다는 것을 보여준다.

  • PDF

폐식용유를 연료로 하는 디젤 기관(機關)의 배기(排氣) 배출물 생성(生成)에 미치는 연료(燃料) 성상(性狀)의 영향(影響) (The Affect of Fuel Properties on Exhaust Emissions Formation of Used Vegetable Oil in a Diesel Engine)

  • 오영택
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.162-175
    • /
    • 1995
  • Exhaust emissions in diesel engine are affected by fuel properties, but the reason for this is not clear. Especially, the recent strong interest in using low-grade fuel such as used vegetable oil as alternative diesel fuel demands extensive investigation in order to clarify the exhaust emissions. The purpose of this study is to evaluate the feasibility of a used vegetable oil as an alternative fuel in a diesel engine in terms of exhaust emissions. The emission concentration of used vegetable oil such as formaldehyde and acrolein is two times than that of diesel fuel. However, since that of alcohol is ten times than that of used vegetable oil and that concentration is very low, it is not a problem for human health.

  • PDF

Application of Field and Laboratory Emission Cell (FLEC) to Determine Formaldehyde and VOCs Emissions from Wood-Based Composites

  • Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.24-37
    • /
    • 2007
  • The Korean Ministry of Environment started controlling indoor air quality (IAQ) in 2004 through the introduction of a law regulating the use of pollutant emitting building materials. The use of materials with formaldehyde emission levels above $1.25 mg/m^2{\cdot}h$ (JIS A 1901, small chamber method) has been prohibited. This level is equivalent to the $E_2$ grade ($>5.0mg/{\ell}$) of the desiccator method (JIS A 1460). However, the $20{\ell}$ small chamber method requires a 7-day test time to obtain the formaldehyde and volatile organic compound (VOC) emission results from solid building interior materials. As a approach to significantly reduce the test time, the field and laboratory emission cell (FLEC) has been proposed in Europe with a total test time less than one hour. This paper assesses the reproducibility of testing formaldehyde and TVOC emissions from wood-based composites such as medium density fiberboard (MDF), laminate flooring, and engineered flooring using three methods: desiccator, perforator and FLEC. According to the desiccator and perforator standards, the formaldehyde emission level of each flooring was ${\le}E_1$ grade. The formaldehyde emission of MDF was $3.48 mg/{\ell}$ by the desiccator method and 8.57 g/100 g by the perforator method. To determine the formaldehyde emission, the peak areas of each wood-based composite were calculated from aldehyde chromatograms obtained using the FLEC method. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde were detected as aldehyde compounds. The experimental results indicated that MDF emitted chloroform, benzene, trichloroethylene, toluene, ethylbenzene, m,p-xy-lene, styrene, and o-xylene. MDF emitted significantly greater amounts of VOCs than the floorings did.

Effects of an Inorganic Compound Added to Amino Resin Binders for Manufacture of Plywood

  • Lee, Sang-Min;Yoon, Kyoung-Dong;Park, Jong-Young;Park, Sang-Bum
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.18-23
    • /
    • 2009
  • Curing behavior and structural property of an inorganic compound added urea-formaldehyde(UF) and urea-melamine-formaldehyde(UMF) were studied. In addition, tensile strength and formaldehyde emission of plywoods made of those resin binders were studied. Curing temperature and structure were not changed, but tensile strengths of plywoods manufactured both with a UF resin and a UMF resin were decreased slightly as increased amount of inorganic compound. Formaldehyde emissions from plywoods were reduced as increased amount of inorganic compound. Wheat flour as an extender was helped to reduce of formaldehyde emission. From the result of this study it might be estimated that using appropriate amount of inorganic compound and proper resin system can be strengthened bond strength and reduced formaldehyde emission.

Carbonyl Emissions during Food Decay from Kimchi, Fish, and Salted Fish

  • Kabir, Ehsanul;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권2호
    • /
    • pp.109-115
    • /
    • 2008
  • In this study, the emissions of carbonyl compounds as offensive odorants were measured using three food types (Kimchi, fresh fish, and salted fish) as a function of time. Odor samples for each food type, collected at 0, 1, 3, 7, and 14 days, were analyzed by high performance liquid chromatography (HPLC). Only three kinds of carbonyl compounds were quantified above their respective detection limits: formaldehyde, acetaldehyde, and acetone. The emission patterns of these compounds were distinguishable from each other. Formaldehyde tends to peak at the beginning and decrease through time with unique patterns. Conversely, acetaldehyde and acetone seem to increase gradually through time. The results showed that relative patterns of carbonyl emissions were more distinguishable by compound type rather than food type.

국내 발암물질 배출량 특성과 암발생 추이에 관한 연구 (Study on the Characteristics of Carcinogenic Pollutant Emissions and Cancer Incidence Rates in Korea)

  • 임지영;김보경;김현지;윤정현;허화진;이지호;이상목;이청수
    • 한국환경보건학회지
    • /
    • 제44권2호
    • /
    • pp.160-168
    • /
    • 2018
  • Objectives: The purposes of the study were to investigate hazardous pollutant emissions changes among group 1 carcinogens. The emissions characteristics were compared with national cancer registration statistics. Methods: A survey of group 1 carcinogen hazardous pollutant emissions (trichloroethylene, benzene, vinyl chloride, formaldehyde, 1,3-butadiene, ethylene oxide, chromium and its compounds, 3,3'-dichloro-4,4-diaminodiphenylmethane, chloromethyl methyl ether, arsenic and its compounds, cadmium and its compounds, o-toluidine) was conducted through a homepage for 2001-2015. The emission of hazardous chemicals and the cancer trend analysis for 2001-2015 were performed using the Korean statistical information service through its homepage as a reference. Results: Emissions of more than 95% of the substances listed as group 1 carcinogens over the last five years were made up of trichloroethylene, benzene, vinyl chloride, formaldehyde, 1,3-butadiene, and ethylene oxide. As a result of the comparison of emission results and cancer incidence rates, carcinogen pollutant emissions showed a tendency to decrease continuously. In addition, the incidence of cancer tended to increase, but showed a tendency to decrease from 2012. Conclusion: The results indicate hazardous pollutant emissions have continued to increase. However, no association between emissions and health effects was shown and more research is needed.

Formaldehyde and TVOC Emission of Bio-Composites with Attached Fancy Veneer

  • Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Ki-Wook;Lee, Se-Na;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.46-55
    • /
    • 2008
  • This study assesses the formaldehyde and TVOC emissions from bio-composites with attached fancy veneer manufactured using wood flour and polypropylene (PP) measured using the Field and Laboratory Emission Cell (FLEC) method and 20 L small chamber method. To determine and compare the effects of the adhesive, samples were prepared with different manufacturing methods. In the FLEC result, the formaldehyde emission level of the bio-composites with attached veneer by hot-press was the lowest than pure bio-composite and bio-composite attached veneer using adhesive. The TVOC emission levels are similar to the formaldehyde emission. The TVOC emission level is very low in all of the samples except fancy veneer that is attached with bio-composites using adhesive. The TVOC emission varies depending on how attaching fancy veneer. The results of the 20 L small chamber method were very similar to those obtained with the FLEC, but the correlation was not perfect. However, the FLEC method requires a shorter time than the 20 L small chamber method to measure the formaldehyde and TVOC emissions. The internal bonding strength exceeded the minimum value of $0.4N/mm^2$ specified by the KS standard. All of the bio-composites with attached veneer satisfied the KS standard.