• 제목/요약/키워드: form-accuracy

검색결과 1,350건 처리시간 0.027초

선박설계를 위한 계산유체역학의 활용에 대하여 (The Application of CED for Ship Design)

  • 김우전
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.5-8
    • /
    • 2002
  • The issues associated with the application of CFD for ship design are addressed. It is quite certain that the CFD tools are very useful in evaluating hull forms a prior to traditional towing tank tests. However, the time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

  • PDF

가공 인자에 다른 미세 전해 가공 속도 변화 연구 (Study on Machining Speed according to Parameters in Micro ECM)

  • 권민호;박민수;신홍식;주종남
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

연마 공구의 압력 보정에 의한 곡면 금형의 형상 정밀도 향상 (Improvement of Form Accuracy in Curved Dies and Molds Using Compensation of Finishing Tool)

  • 임동재;정해도;안중환;안대균
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.866-869
    • /
    • 2000
  • The finishing process for die is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But die automatic finishing machine has the problems such as low supply rate and high machine price. In this paper 3-axis machine was applied to the die finishing. And to improve form accuracy of die finishing path was regenerated. The finishing path considered tilting of finishing tool. and variation of machining force with contacting point between finishing and workpiece.

  • PDF

자유곡면 프리즘 렌즈 사출용 코어 초정밀 형상 가공 (Ultra precision machining of the mold core for free surface prism lens)

  • 이동길;이학석;이종진;송민종;김상석;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.452-452
    • /
    • 2008
  • Abstract Head-mounted displays(HMD) are being developed and marketed in growing numbers for a variety of applications. Though most commonly associated with entertainment applications other applications are also being developed. The field vision on the display screens is expanded by the optical system producing an imaginary screen that appears to be positioned several meters in front of the viewer. In this study, the mold core for the prism lens of HMD was processed by fly-cutting method, and the form accuracy of the mold core was measured.

  • PDF

Transient linear elastodynamic analysis in time domain based on the integro-differential equations

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.71-84
    • /
    • 2002
  • A finite element formulation for the time-domain analysis of linear transient elastodynamic problems is presented based on the weak form obtained by applying the Galerkin's method to the integro-differential equations which contain the initial conditions implicitly and does not include the inertia terms. The weak form is extended temporally under the assumptions of the constant and linear time variations of field variables, since the time-stepping algorithms such as the Newmark method and the Wilson ${\theta}$-method are not necessary, obtaining two kinds of implicit finite element equations which are tested for numerical accuracy and convergency. Three classical examples having finite and infinite domains are solved and numerical results are compared with the other analytical and numerical solutions to show the versatility and accuracy of the presented formulation.

비대칭비구면 렌즈 사출 코어용 6:4 황동 초정밀 형상 가공 (Ultra Precision Machining of Injection Mold Core for Asymmetric Aspheric Lens using 6:4 Brass)

  • 이동길;구할본;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.427-427
    • /
    • 2007
  • The global applications of aspherics surfaces will expand rapidly on the electronics, optical components, communications, aerospace, defense, and medical optics devices etc. Especially, Asymmetric aspheric prism lens is one of the important parts in HMD(Head Mounted Display) because it affects dominantly on the optical performance of HMD. The mold core is the most important device to produce the plastic lenses by injection molding method. In this study, the mold cores for asymmetric aspheric prism lens were processed using fly-cutting method which is kind of the ultra precision processing and form accuracy and surface roughness of the cores were measured.

  • PDF

정밀 좌표측정용 머신비전 시스템의 광학적 해석에 관한 연구 (A Study on the optical aspects of machine vision based dimensional measurement system)

  • Lee, E.H.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.149-163
    • /
    • 1994
  • A novel method of dimensional measurement using machine vision, which is called Landmark Tracking System, has been developed. Its advantages come form tracking only the bright, standard shaped "landmarks" which are made from retroreflective sheets. In the design of the LTS, it is essential to know the relationship between optical parameters and their influence on system performance. Such optical parameters include the brightness of landmark image, the illumination system design, and the choice of imaging optics. And the performance of retroreflective material also plays important role in the LTS performances. Influences of such optical parameters on LTS's dimensional measurement characteristics are investigated, with respect to the retroreflective material, the imaging optics, and the illumination system. Measuremtn errors due to parameter variations are also analyzed. Experiments are performed with a LTS prototype. Retroreflective characteristics are verified, and the LTS's measurement performances are measured in the form of repeatability and accuracy. Experimental results shgow that the LTS has repeatability better than 1/30,000 of a field of view(30 degrees), and accuracy better tha 1/3,000 of a field fo view.d fo view.

  • PDF

엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현 (Representation of cutting forces and tool deflection in end milling using Fourier series)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

FDM 방식 3D 프린팅에서 제작 조건에 따른 기계적물성치와 형상정밀도의 실험적 비교 (Comparison of Mechanical Properties and Form Accuracy in FDM 3D Printing Based on Building Conditions)

  • 김기대
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.52-59
    • /
    • 2021
  • In this study, we experimentally evaluated the mechanical properties and geometric form accuracy in FDM 3D printing processes based on the printing direction, building direction, and layer thickness. The specimen test results showed that the tensile strength increased by over 33% in the printing direction compared to the direction perpendicular to printing and the tensile strength becomes larger as the layer thickness decreased. Furthermore, the tensile and impact strengths in the building direction were significantly reduced due to the difference in the interlayer joining and bonding strengths of the fused material. Additionally, shrinkage of the material due to phase change induced curl distortion especially in thin and long 3D-printed products, which increased as the layer thickness increased.

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.