• Title/Summary/Keyword: form-accuracy

Search Result 1,350, Processing Time 0.039 seconds

Inverse Problem of Determining Unknown Inlet Temperature Profile in Two Phase Laminar Flow in a Parallel Plate Duct by Using Regularization Method (조정법을 이용한 덕트 내의 이상 층류 유동에 대한 입구 온도분포 역해석)

  • Hong, Yun-Ky;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1124-1132
    • /
    • 2004
  • The inverse problem of determining unknown inlet temperature in thermally developing, hydrodynamically developed two phase laminar flow in a parallel plate duct is considered. The inlet temperature profile is determined by measuring temperature in the flow field. No prior information is needed for the functional form of the inlet temperature profile. The inverse convection problem is solved by minimizing the objective function with regularization method. The conjugate gradient method as iterative method and the Tikhonov regularization method are employed. The effects of the functional form of inlet temperature, the number of measurement points and the measurement errors are investigated. The accuracy and efficiency of these two methods are compared and discussed.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

Design of Contour Error Models using Contour Error Vector (윤곽오차 벡터를 이용한 윤곽오차 모델 설계)

  • 최정희;이명훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.895-898
    • /
    • 2003
  • The higher precision is demanded in modem manufacturing and it requires the more accurate servo controller. Cross-coupling control (CCC) has been developed to improve contouring motion. In this paper we introduce a new nonlinear CCC that is based on contour-error-vector using a parametric curve interpolator. A vector from the actual tool position to the nearest point on the desire path is directly adopted. The contour-error-vector is determined by constructing a tangential vector of nearest point on desired curve and determining the vector perpendicular to this tangential vector from the actual tool position. Moreover, the vector CCC can apply directly and easily to free-form curves include convex and concave form. The experimental results on a three-axis CNC machine center show that the present approach significantly improves motion accuracy in multi-axis motion

  • PDF

A Study on the Characteristics of Zerodur Grinding using Ultra-Precision Machine (초정밀가공기를 이용한 Zerodur의 연삭 특성에 관한 연구)

  • 김주환;김건희;한정열;김석환;원종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.405-409
    • /
    • 2003
  • We explored a new rough grinding technique on optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and range of diamond resin bond wheel. The grinding parameters such as workpiece rotation speed depth of cut and feed rate were altered while grinding the workpiece surfaces of 20m in diameter. Surface roughness is measured by Form Talysurf series2. Our target is to define grinding conditions producing the surface roughness better than 0.02${\mu}{\textrm}{m}$ Ra and the form accuracy of around 0.2${\mu}{\textrm}{m}$ PV.

  • PDF

Finite Element Analysis on the Motion Error of Hydrostatic Table (FEM을 이용한 유정압테이블의 운동정밀도 해석)

  • 박천홍;정재훈;이후상;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.658-662
    • /
    • 2000
  • In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.

  • PDF

Optimal Production Cost Evaluation Using Karmarkar Algorithm (Karmarkar 알고리듬을 이용한 최적 발전시뮬레이션)

  • Song, K.Y.;Kim, Y.H.;Oh, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.113-116
    • /
    • 1995
  • In this study, we formulate production costing problem with environmental and operational constraints into an optimization problem of LP form. In the process of formulation, auxiliary constraints on which reflect unit loading order are constructed to reduce the size of optimization problem by economic operation rules. As a solution of the optimization problem in LP form, we use Karmarkar's method which performs much faster than simplex method in solving large scale LP problem. The proposed production costing algorithm is applied to IEEE Reliability Test System, and performs production simulation under environmental and operational constraints. Test and computer results are given to show the accuracy and usefulness of the proposed algorithm in the field of power system planning.

  • PDF

A Study on the Contact Error of Dial Gauge (DIAL GAUGE 측정자의 접촉오차에 관한 연구)

  • 강석수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to maintain the faith and accuracy with precision of machinery, it is recently required the precise comprehension about approach which is appeared in the contact area between two bodies, because approach affects the static stiffness and dynamic characteristic of contact area. This study applied H. Hertz's circle contact area theory as much lower measuring force. It is measured approach influenced by various factors which were concerned with contact errors like material, form of two bodies, using calibration tester. As a result, the following conclusion can be obtained. 1) The approach appears greatly in order of carbon steel(SM20C), aluminum(A601-T6) and high density polyethylene(5305E) 2) The approach appears in order of concave, disc, convex form, in the ration of contact area size by the difference of curvature.

  • PDF

Approximate Analysis of a CONWIP system with Compound Poisson Demands (Compound Poisson 수요를 갖는 CONWIP 시스템의 근사적 분석)

  • 이정은;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.153-168
    • /
    • 1998
  • In this study we consider a CONWIP system in which the processing times at each station follow an exponential distribution and the demands for the finished Products arrive according to a compound Poisson process. The demands that are not satisfied instantaneously are assumed to be backordered. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts at each station, the proportion of backordered demands, the average number of backordered demands and the mean waiting time of a backordered demand. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. A matrix geometric method is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method were compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.

  • PDF

Saddlepoint Approximations to the Distribution Function of Non-homogeneous Quadratic Forms (비동차 이차형식의 분포함수에 대한 안장점근사)

  • Na Jong-Hwa;Kim Jeong-Soak
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.183-196
    • /
    • 2005
  • In this paper we studied the saddlepoint approximations to the distribution of non-homogeneous quadratic forms in normal variables. The results are the extension of Kuonen's which provide the same approximations to homogeneous quadratic forms. The CGF of interested statistics and related properties are derived for applications of saddlepoint techniques. Simulation results are also provided to show the accuracy of saddlepoint approximations.

A Study on the 3-D Form Characteristics of Center Ground Parts (원통연삭 가공물의 3차원 형상특성에 관한 연구)

  • Cho, Jaeil;Kim, Kang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.95-99
    • /
    • 1996
  • The form accuracy of parts has become an important parameter. Therefore dimensional tolerance and geometric tolerance are used in design to satisfy required quility and functions of parts. But the informations for machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among these parameters. Finally, a methodology is proposed for getting the optimal grinding condition for precision workpiece The results are as follows; The effects of work speed and depth of cut on workpiece shape are ignorable compared to the effect of traverse speed. These is the optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing when the traverse speed is increased.

  • PDF