• 제목/요약/키워드: form material

검색결과 3,325건 처리시간 0.03초

Mapping Korean Medicinal Material Concepts to UMLS

  • Kim, Jin-Hyun;Jang, Hyun-Chul;Kim, Sang-Kyun;Kim, Chul;Yea, Sang-Jun;Jeon, Byoung-Uk;Song, Mi-Young
    • 대한한의학회지
    • /
    • 제32권6호
    • /
    • pp.85-94
    • /
    • 2011
  • Objectives: This pilot study was carried out with the purpose of suggesting a methodology on mapping and registering Korean medicinal material concepts at 2011AB of the UMLS. Methods: 411 medicinal material concepts were mapped to biomedical terminology within the metathesaurus of the UMLS. Based on the forms of listing on the UMLS and thesauri information, the medicinal material concepts were classified into three groups and mapped. Results: 76 concepts in Group 1 which English CUIs have Chinese AUIs were mapped considering scientific names and Chinese strings. 259 concepts in Group 2 that have CUIs in the form of 'botanical name/Chinese pinyin' were mapped with the information of Korean and Chinese Pharmacopoeias. Groups 3, 76 concepts of English names in the Korean Pharmacopoeia are matched considering their botanic names and used parts. Conclusion: This study suggested a methodology to map Korean medicinal material concepts to international standard terminology, which will help ensure interoperability and compatibility between traditional medicine terminology and the UMLS.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation

  • Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Benachour, Abdelkader;Bedia, El Abbas Adda
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.117-128
    • /
    • 2018
  • In this research work, free vibrations of simply supported functionally graded plate resting on a Winkler-Pasternak elastic foundation are investigated by a new shear deformation theory. The influence of alternative micromechanical models on the macroscopic behavior of a functionally graded plate based on shear-deformation plate theories is examined. Several micromechanical models are tested to obtain the effective material properties of a two-phase particle composite as a function of the volume fraction of particles which continuously varies through the thickness of a functionally graded plate. Present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. The energy functional of the system is obtained using Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models on natural fundamental frequencies.

EVA/Acetylene Black 복합체의 동역학적 점탄성 분석 (A Study on the Dynamic Viscoelasticity of EVA/Acetylene Black Composites)

  • 이경용;양종석;최용성;남종철;성백룡;박동하;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.140-141
    • /
    • 2005
  • To measure elastic properties of semiconducting materials in power cable, we have investigated modulus of EVA/acetylene black composite showed by changing the content of acetylene black. The specimen was primarily kneaded in material samples of pellet form for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then this was produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The contents of conductive acetylene black were 20, 30 and 40[wt%], respectively. The modulus experiment was measured by DMA 2980. The ranges of measurement temperature were from -50[$^{\circ}C$] to 100[$^{\circ}C$] and measurement frequency is 1[Hz]. The modulus of specimens was increased according to an increment of acetylene black content. And modulus was rapidly decreased at the glass transition temperature. The tan$\delta$ of specimens was decreased according to an increment of acetylene black content.

  • PDF

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제55권1호
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud;Samir Benyoucef;Attia Bachiri;Rabbab Bachir Bouiadjra;Abdelouahed Tounsi;Mahmoud M Selim;Hosam A. Saad
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.45-56
    • /
    • 2024
  • This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

수작업을 통한 한지 패션 소재 디자인 개발 (The Design Development of Korean Paper Fashion Material through Manual Work)

  • 변미연;이인성
    • 한국생활과학회지
    • /
    • 제17권6호
    • /
    • pp.1205-1213
    • /
    • 2008
  • Material is a factor for maximizing formative aspect among fashion design factors. Therefore, central axis of modern fashion is performing various trials for escaping from existing cloth and searching for artistic value. Especially, Korean paper is a formative material, which is manufactured through traditional manual work in Korea. The material is used in various fields on the basis of its aesthetic feature. Especially, fashion field performs handcraft activity on the basis of mulberry pulp, which is a prime material of Korean paper. Because the activity can be reinterpreted by world designers, who want to find motive of fashion material in the third world, it is necessary to perform experimental study for developing expressive form on the basis of diversity of Korean paper material. Therefore, the purpose of this study is to perform experimental study by focusing on the development of Korean paper material in order to express formative feature. The study purposes are as follows. The first purpose is to reinterprete the theory through actual work of fiber formation using Korean paper in the current flow where art and design field are fused and compromised. The second purpose is to suggest vision of material development on the basis of formative feature to fashion world focusing its eyesight to Asia and the third countries. The study results are as follows. First, Korean paper has been evaluated as proper material for the fusion of design and art because of its handicraft feature, long-term preservation, heat insulation, absorption, diversity and eastern feature. Second, the study performed various trials for artistic dress material by developing 12 Korean paper works and suggested the development of new material on the basis of formative feature of modem fashion industry.

물이 당신의 건강을 좌우한다 (Water is Hold Your Health)

  • 구광서
    • 기술사
    • /
    • 제35권4호
    • /
    • pp.29-33
    • /
    • 2002
  • WATER, the best known and most abundant of all chemical compounds occurring in relatively pure form on the earth"s surface . And life, the material of which organisms are made by water and protoplasm. Especially, between human life and water must be joined by human"s protoplasm, proteins, nucleic acids cells energy exchange and anothers. Therefore. health of mankind is In according to drink enough clean water and to use good water environment.

  • PDF