• Title/Summary/Keyword: form material

Search Result 3,325, Processing Time 0.033 seconds

Characteristics of a-IGZO TFT by the material of substrate and temperature (Substrate 물질에 따른 a-IGZO TFT의 온도 특성)

  • Lee, Myeong-Eon;Jeong, Han-Wook;Park, Hyun-Ho;Choi, Byung-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.148-148
    • /
    • 2010
  • Measuring the a-IGZO TFTs with various temperatures was found to induce a threshold voltage shift and a change of the subthreshold gate voltage swing. Characteristic change is dependant on a material of the substrate at the temperature from $20^{\circ}C$ to $100^{\circ}C$. The threshold voltage was shifted to the left from -2.7V to -61V on SiO2/galss. But, as the temperature increases form $20^{\circ}C$ to $100^{\circ}C$. the threshold voltage was shifted to the right from 0.85V to 2.45V.

  • PDF

Analysis of functionally graded plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2017
  • This paper uses the four-variable refined plate theory for the free vibration analysis of functionally graded material (FGM) rectangular plates. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from the Hamilton's principle. The closed-form solutions of functionally graded plates are obtained using Navier solution. Numerical results of the refined plate theory are presented to show the effect of the material distribution, the aspect and side-to-thickness ratio on the fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of functionally graded plates.

Adaptive Output-feedback Neural Control for Strict-feedback Nonlinear Systems (strict-feedback 비선형 시스템의 출력궤환 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Il-Whan;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.526-528
    • /
    • 2006
  • An adaptive output-feedback neural control problem of SISO strict-feedback nonlinear system is considered in this paper. The main contribution of the proposed method is that it is shown that the output-feedback control of the strict-feedback system can be viewed as that of the system in the normal form. As a result, proposed output-feedback control algorithm is much simpler than the previous backstepping-based controllers. Depending heavily on the universal approximation property of the neural network (NN) only one NN is employed to approximate lumped uncertain nonlinearity in the controlled system.

  • PDF

Adaptive Neural Control for Pure-feedback Nonlinear Systems (순궤환 비선형 시스템의 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Do-Hee;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.523-525
    • /
    • 2006
  • Adaptive neural state-feedback controllers for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis considerably to be simplified. The proposed controllers employ only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller.

  • PDF

페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Song, Myeong-Gwan
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.98-111
    • /
    • 2018
  • The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.

Improvement in Interfacial Performances of Silicone Rubber by Oxygen Plasma Treatment

  • Lee, Ki-Taek;Seo, Yu-Jin;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.232-233
    • /
    • 2005
  • The Surface of semi-conductive silicone rubber was treated by oxygen plasma to improve adhesion and electric performance in joints between insulating and semi-conductive silicone materials. Surface characterizations were assessed using contact angle measurement and Fourier transform infrared spectroscope (FTIR). Adhesion level was understood from T-peel tests between plasma treated semi-conductive and insulating material. Electrical breakdown strength was measured to understand the charge of electrical performance. From the results, the oxygen plasma treatment produces a significant increase in function group of containing oxygen which can be mainly ascribed to the creation of carbonyl groups on the silicone surface from the strength were improved. Therefore it is concluded then plasma treatment leads to decrease voids originating form poor adhesive, and the improve the adhesion in silicone interface. So we could obtain higher electrical design level of silicone material used for electrical apparatus using oxygen plasma treatment.

  • PDF

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

The Development of Perspectives for Viewing the Aesthetics of Costume (복식미를 보는 시(視)형식 개발)

  • Shin, Joo-Yun;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.7
    • /
    • pp.76-91
    • /
    • 2008
  • The purpose of this study is to prescribe formative perspectives as a framework where the aesthetic taste and demands of a certain period are embodied and to develop new analytical tools to examine the beauty of dress in terms of form. First, the theoretical tools selected for this study are Heinrich Wolfflin's formative perspective theory derived from art and Marilyn R. DeLong's framework for visual analysis of dress. Second, several issues that limited the development of a new framework for analyzing the form of dress were identified and addressed. Third, the selected aspects of dress form to be analyzed are specified. They are: silhouette, inner form, structure form, materials and patterns based upon the relationship between the body, dress and space in order to develop new formative perspectives. Based upon these theories a new framework for analyzing dress aesthetics in terms of form is developed. This reconstructed framework consists of three sets of antagonistic representational styles: closed form/open form, linear form/painterly form and multiplicity/unity. Closed form/open form represented in dress can be classified by the clear or obscure silhouette shown not only in the relationship between the dress and space around the dress, but also from changeability or invariability of dress in relation to the body. The material, pattern and various design elements are used as the central criteria to determine the linear/painterly characteristics in dress representations. Finally, the multiplicity/unity can be found in the relationship between the whole and the parts. Multiplicity is represented in dress when the parts have a visual priority over the whole, whereas unity is represented when a dress as a whole has visual priority over the parts. A dress represented with closed form, linear characteristic and multiplicity is perceived as a clear form. In contrast, a dress with open form, painterly characteristic and unity is understood to be an obscure form. It can be said that this study is the first attempt to establish the formative perspectives for analyzing the form of dress in various periods, cultures and races for the future studies.

Evaluation of the grouting in the sandy ground using bio injection material

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.739-752
    • /
    • 2017
  • This study was intended to evaluate the improved strength of the ground by applying the bio grouting method to a loose sandy ground. The injection material was prepared in the form of cement-like powder, with the bio injection material produced by microbial reactions. The grouting test was conducted under the conditions similar to the field where the bio injection material can be applied. In addition, the injection materials (cement and sodium silicate No. 3) used for Labile Waterglass (LW) method and the conventional grouting methodwere prepared through a two-solution one-step process. The injection into the specimens was done at a pressure of 150 kPa and then, with a bender element, their moduliof elasticity were measured on the 7th, 14th, 21st and 28th curingdays to analyze their strengths according to the duration of curing. It was confirmed that in all injection materials the moduli of elasticity increased over time. In particular, when 30% of the bio injection material was added to 100% cement, the modulus of elasticity tended to increase by about 15%. This confirmed that the applicability became higher when the bio injection material was used in place of the conventional sodium silicate.

The Development of Damping Material for Standard Floating Floor Type-5 Using Ethylene Vinyl Acetate co-polymer(EVA) & Urethane Form (EVA와 경질우레탄폼을 이용한 표준바닥구조 벽식-5용 단열완충재 개발)

  • Park, Cheol-Yong;Kim, Sang-Hoon;Jang, Dong-Woon;Jang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.461-464
    • /
    • 2004
  • The reduction effect of floor impact noise depends on the various factors such as stiffness and thickness of the concrete slab, finishing If ceiling materials and the composition method. Among the rest it is well known that floating floor system is more effective. Standard floating floor(SFF) type-2 consisted of 50mm lightweight aerated concrete(LAC) and 20mm damping material has been widely used. But LAC construction problem on dry damping material occurred and the reduction effect of floor impact noise has bare minimum qualifications. Thus the aim of this study is to develop 40mm composite damping material(Soundzero Plus) for SFF type-5 which substitute LAC and damping material. 'Soundzero Plus' is satisfied with quality requirement for damping material for SFF. The heat transition rate, $0.45W/m^2{\cdot}K$ is more effective 55% about than the regulation. The test results of floor impact noise by using 'Soundzero Plus' are showed good improvement about 12dB (tested by tapping machine) and 4dB (tested by bang machine) between before and after.

  • PDF