• Title/Summary/Keyword: form drag

Search Result 96, Processing Time 0.027 seconds

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Hull Form Development of a Bulk Carrier using CFD (CFD를 이용한 벌크화물선의 선형개발)

  • Park, Hyun-Suk;Kim, Byeoung-Nam;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.502-512
    • /
    • 2008
  • CFD tools were intensively used to develop a bulk carrier hull form of 180,000 DWT. HCAD and WAVIS were utilized to vary and evaluate the hull forms. LCB and framelines were systematically changed starting from a mothership. Resistance characteristics have been assessed by evaluating the wave-pattern resistance and viscous pressure drag along with the wave profile and wake distribution. It was found that the hull forms obtained from LCB variations were not good enough to satisfy the target resistance coefficient because of large wave generation at the design speed. After choosing the appropriate one from the LCB variation series, bow and stern framelines have been modified to improve wave-making characteristics and wake distribution, respectively. Model tests were performed to confirm the CFD results. Furthermore, the effect of free surface on CFD application was investigated, and a few comments are given on the difference between WAVIS version 1.4 and 2.0.

Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

  • Javaid, Muhammad Yasar;Ovinis, Mark;Hashim, Fakhruldin B.M.;Maimun, Adi;Ahmed, Yasser M.;Ullah, Barkat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.382-389
    • /
    • 2017
  • We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

The Effect of Additives on Twins in ZnO Varistors (ZnO 바리스터에서 첨가물이 쌍정에 미치는 영향)

  • 한세원;조한구;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1057-1060
    • /
    • 2001
  • By comparison of the experimental results in two systems of ZnO varistors, its appear that Sb$_2$O$_3$is the indispensable element for twinning in ZnO varistors, and the Zn$_{7}$Sb$_2$O$_{12}$ spinel acts as the nucleus to form twins. A1$_2$O$_3$is not the origin of twinning in ZnO varistor, but it was found that A1$_2$O$_3$could strengthen the twinning and form a deformation twinning by ZnA$_{12}$O$_4$-dragging and pinning effect. The inhibition ratios of grain growth and nonuniformity of two systems ZnO varistors increase with the increase of A1$_2$O$_3$content. The twins affect the inhibition of grain growth, the mechanism could be explained follow as : twins increase the mobility viscosity of ZnO grain and grain boundary, and drag ZnO grain and liquid grain boundary during the sintering, then the grain growth is inhibited, and the microstructure becomes more uniform.orm.m.

  • PDF

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models (합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측)

  • Janghoon, Seo;Hyun Sik, Yoon;Min Il, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

Computation of the Slow Viscous Flow about a Normal Plate (수직평판 주위를 흐르는 느린 점성류의 수치해석)

  • 인기문;최도형;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2329-2338
    • /
    • 1993
  • An accurate analysis procedure to solve the flow about a flat plate at various incidences has been developed. The Navier-Stokes equations of stream function and vorticity form are solved in a sufficiently large computational domain, in which the grid lines are mutually orthogonal. The details of the flow near the singularity at the tip of the plate is well captured by the analytic solution which is asymptotically matched to the numerically generated outer solution. The solution for each region is obtained iteratively : the solution of one (inner or outer) region uses that of the other as the boundary condition after each cycle. The resulting procedure is accurate everywhere and also computationally efficient as the singularity has been removed. It is applied to the flat plate for a wide range of Re : the results agree very well with the existing computation and experiment.

A Study on Aerodynamic Properties of Two-Dimensional Rectangular Prism in Various Angles of Attack (다양한 영각을 갖는 2차원 장방형 각주의 공력특성에 관한 연구)

  • 송근택;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.485-492
    • /
    • 2002
  • The present study is aimed to reveal macroscopic aerodynamic characteristics of two-dimensional rectangular prisms with three aspect ratios(D/H=1, 2 and 3) and six angles of attack($0^{circ}, 10^{circ}, 13.5^{circ}, 20^{circ}, 30^{circ} and 45^{\circ}$). The Reynolds number is fixed as $1\times10^4$. The SOLA-based revised finite difference method for the conservation form on irregular grid was adopted as a new numerical method. Instantaneous flow patterns at $45^{\circ}$ in case of D/H=2 and D/H=3 show larger asymmetric wake development which is closely related to the sharp decrease of drag coefficients at higher angles of attack range. Vorticity propagation into enlarged wake region is conjectured to be responsible for this phenomenon. The Strouhal number is found to be sensitive to the angle of attack at higher aspect ratios(D/H=2 and 3).

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.