• Title/Summary/Keyword: forging test

Search Result 163, Processing Time 0.071 seconds

Forging Effect of Al6061 in Casting/Forging Process (주조/단조 공정에서 Al6061의 단조효과에 관한 연구)

  • Kwon, Oh-Hyuk;Bae, Won-Byong;Cho, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.45-50
    • /
    • 2005
  • In this study, the casting/forging process was applied in manufacturing a low control arm, in order to prove that application of casting/forging process to Al6061 is likely to get the effect of light weight compared with existing steel products and to reduce the cost of materials. Firstly, In order to set up the optimum casting condition of the forging material, Al6061, casting experiments were carried out by controlling pouring temperature of the aluminum for casting, mold temperature, and pouring time. $700^{\circ}C$ pouring temperature, $300^{\circ}C$ mold temperature and 10-second pouring time were taken into account as the optimum casting conditions. With respect to a hot forging test, it is practiced on the basis of a temperature of materials, strain rate, and reduction rate so as to observe each microstructure and examine strain-stress curve simultaneously; examine tensile test and hardness test; eventually set up the optimum hot forging condition. A hot forging test, tensile test, hardness experiment, and microstructure observation were carried out on condition of $70\%$ reduction rate, $500^{\circ}C$ temperature of materials, and 1 strain rate. As a result of those experiments, 330MPa tensile strength, $16.4\%$ elongation, and 122.8Hv hardness were recorded. In oder to get a sound preform which has no unfitting cavity and less flash, two preforms were proposed on the basis of volume rate of the final product; the optimum volume rate of preform for the low control arm was $115\%$. In conclusion, it is confirmed that using the forging material rather than casting materials in casting/forging process is likely to get more superior mechanical properties. Compared with Al6061, performed by means of general forging, moreover, cast/forged Al6061 can not only stimulate productivity by reducing production processes, but cut down the cost of materials by reusing forging scraps.

Prediction of Void Crushing Behavior in Upset & Bloom Forging of Large Ingot (대형인곳의 업셋-블룸단조에서의 기공 압착 거동 예측)

  • Kwon I.K.;Kim K.H.;Youn Y.C.;Song M.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.325-328
    • /
    • 2004
  • This paper deals with void crushing behavior by ingot forging process which consists of sequential operations of upset forging and bloom forging. The predicted results of void crushing behavior by the simplified global-local method using F.E. analysis showed that the inherent void at the top region of the ingots remains incompletely crushed even after several forging operations. From the results of the hot upset forging test using the billets with drilled voids, it was found that the bonding efficiency of the void after forging process increases with an increase in deformation, and a decrease of initial diameter of voids.

  • PDF

Simulation of Rotary Forging Process by Model Material Technique (모델재를 이용한 회전단조 공정의 시뮬레이션)

  • 윤덕재;최석우;나경환;김종호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • Model material technique, which requires only the small space of experimental set-up and low cost for experiment, is used to estimate the deformed profile and the forging load in rotary forging. The materials and working conditions are determined to satisfy the similitude conditions between the model test and the prototype test. The model material of the so-called plasticine and the mild steel are chosen as specimens, and they represent almost the same value of strain gardening exponent in the stress-strain relationship. Lubricant in the model test is also carefully selected so that it gives the same frictional conditions at the tool-specimen interface. Experiments for two kinds of specimens are carried out in each testing equipment at room temperatue. From the experiments the deformed dimensions and the forging loads are measured and compared with each other by using the simulation coefficients. It is shown that there are good agreements between the model test and the prototype test. Finally, for verifying the availability of the model material technique this mathod is applied to forging of bevel gear product. the good result is obained which can demonstrate that the model material technique is very efficent for estimating or developing a new process.

  • PDF

Development of Bevel Gear by Powder Forging Process (분말단조에 의한 베벨기어의 성형 기술 연구)

  • 이정만
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.258-267
    • /
    • 1997
  • The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.

  • PDF

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

Warm Forging of a Bevel Gear on the Lubricanting Characteristics of Lubricants (윤활제의 윤활특성에 대한 베벨기어의 온간단조 성형)

  • Park T. S.;Jung D. J.;Kim D. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.244-247
    • /
    • 2001
  • Lubricanting characteristics in the warm forging have influence on forgeability of products. but Research on deformation characteristic of warm forging on the lubricant and lubricating method lack. This paper deform a bevel gear by warm forging and evaluate deformation loads and quality of products by each lubricants and lubricating method using oil-based lubricants(Soy, Oildag) and water-based lubricants(Deltaforge $\#31$, Renite S-26-X, Deltaglaze $\#151$). In conclusion, the less a deformation load by lubricants the more improvement a quality of product in manufacture of a bevel gear and water-based lubricants in the warm forging reduce a deformation load and improve a quality of products. Especially, Deltaforge $\31$ have excellent characteristic in the warm forging.

  • PDF

The Effects of Heat-Affected Zone on Cold Forging Die Life (냉간단조용 금형의 열영향층 형성과 그 영향)

  • 이영선;이정환;정순철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.43-53
    • /
    • 1998
  • Heat - affected zones degenerated in cold forging die have been investigated to improve the tool life. There are many cases of heat-affected zone which are degenerated in manufacturing die and using the cold forging process. In order to define amounts of grinding inmanufacturing the toolfor cold forging, we have investigated the hardness and microstructure of surface layer after EDM. Considering the results of T.R.S. and compression test, it is likely that mechanical properties of tool have been decreased sharply if the heat-affected zones degenerated by EDM were not machined properly. also analyzed the tool surfac which is fractured during the cold forging. According to the microstructures and hardness distribution, surface of many tools have been degenerated in cold forging and fractured due to the heat-affected zone.

  • PDF

Lubrication and Cooling Characteristics of Warm Forging Lubricants (온간단조 윤활제의 윤활 및 냉각특성)

  • Kang, J. H.;Ko, B. H.;Jae, J. S.;Kang, S. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.619-623
    • /
    • 2005
  • Lubrication and cooling characteristics are the most important factors of elevated temperature forging lubricants. Usually adopted lubricants in warm forging processes are graphite, synthetic and emulsion lubricants. Most widely and effectively applied lubricants are graphite lubricants, but these have a lot of problems like tool corrosion and dusty environment. In this research, boronite lubricant is considered, because it is able to substitute for graphite. Hot ring compression test, cooling test and mass production test are performed to check the validity of new lubrication pigment.

The Rotary Powder Compacting Process by the Cold Rotary Forging (회전성형법에서 Rotary Powder Compacting 공정에 관한 특성 연구)

  • 윤덕재;임성주;최석우;나경환
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.227-232
    • /
    • 1997
  • This study is concerned with the rotary powder compacting by the cold rotary forging process. An experiment has been carried out using the rotary powder forging press(500kN) which was designed and constructed in the authors' laboratory. The detailed comparisons of several mechanical test by rotary powder forging and rotary powder compacting process are given. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

The Hot Forging of Small Size Gas Turbine Disks (소형가스터빈 디스크의 얼간단조)

  • Cha, D.J.;Song, Y.S.;Kim, D.K.;Kim, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF