• Title/Summary/Keyword: forging process design

Search Result 346, Processing Time 0.025 seconds

A Study on the Process Planning and Die Design of Hot Forging for Axisymmetric Parts(I) (축대칭 부품에 대한 열간단조의 공정 및 금형설계에 관한 연구(I))

  • Choi, J.C.;Kim, B.M.;Kim, S.W.;Lee, J.S.;Hong, S.S.;Kim, N.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.20-32
    • /
    • 1992
  • This paper describes some research of Computer-Aided Process Planning and Die Design of Hot Forging for axisymmetric parts produced by the press. An approach to the system is based on knowledge based system. The system has been written in AutoLisp with personal computer. Knowledges for process planning & die design are extracted from the plasticity theories, handbooks, relevent references and empirical know-how of field experts in hot forging companies. The developed system is composed of five main modules, such as input module, process planning module, die design module, flow simulation module and output module which are used independently or in all. The final output is generated in graphic from. The developed system which aids designer provides powerful capabilities for process planning and die design of hot forging. This system also provides approximate flow pattern.

  • PDF

Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type (수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계)

  • Park S. S.;Lee J. M.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

Process and die designs for isothermal forging of the small-scale Ti-6Al-4V wing shape (Ti-6Al-4V 소형 날개형상의 항온단조 공정 및 금형설계)

  • Yeom J.T.;Park N.K.;Lee Y.H.;Shin T.J.;Hong S.S.;Shim I.O.;Hwang S.M.;Lee C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.114-117
    • /
    • 2004
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The minimization of forging load and uniform strain distribution in a given forging condition were considered as main design factors. The FE simulation results fur the final process design were compared with the isothermal forging tests. Finally, the modified process design for producing the uniform Ti-6Al-4V wing product without forming defects was suggested.

  • PDF

A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging (열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구)

  • Yeom, Sung-Ho;Lee, Jeong-Ho;Woo, Ho-Kil
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

A Process Design for Hot-Forging of a Titanium-6242 Disk (티타늄-6242 디스크의 열간단조를 위한 공정설계)

  • 박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.271-281
    • /
    • 1994
  • Titanium-6242 $({\alpha}+{\beta})$ alloy has been used for aircraft engine components such as disks and blades, because it has an excellent strength/weight ratio at high temperatures. When this material is forged to manufacture disks, process parameters should be carefully designed to control strain and temperature distributions within the process windows by which desirable mechanical properties can be produced. In the present investigation, it was intended to design the process parameters for a conventional hot forging of this material by using a rigid-thermoviscoplastic finite element analysis technique. It was assumed that the process was performed by a screw press which is capable of maintaining a constant ram speed during loading. From the analysis results, it was found out that the initial temperature of the workpiece and the die shape were important parameters to control the forging process. In result, these parameters were properly designed for hot forging of a disk with specific dimensions.

  • PDF

Optimal Preform Design in Powder Forging by the Design Sensitivity (설계민감도를 이용한 분말단조 공정에서의 최적 예비성형체 설계)

  • 정석환;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.113-116
    • /
    • 1998
  • A derivative based approach to process optimal design in powder forging is presented. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for the optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing numerical tests. The capability of the proposed approach to deal with diverse process parameters and objective functions is demonstrated through applications to some selected process design problems.

  • PDF

Optimization of Forging Process of Gate Valve using DACE Model (DACE 모델을 이용한 게이트밸브 단조공정의 최적설계화)

  • Oh, Seung-Hwan;Kong, Hyeong-Geol;Kang, Jung-Ho;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • In case of the welding process, a conventional production method of gate valve, it has a merit of light weight, but also a demerit of high production cost and an impossibility in mass production due to work by hand. However, in case of the forging process, it has economic merits and can take a mass production process, too. The main focus of this paper is the optimization of preform in the forging process. This paper proposed an optimal design to improve the mechanical efficiency of gate valve made by forging method instead of welding. the optional design is conducted as application of real response model to Kriging model using computer simulation. Also, from verification of the response model with optimized results we were confirmed that the applications of Kriging method to structural optimum design using finite element analysis and equation are useful and reliable.

  • PDF

A Study on Transfer Process Design on Hot Forging of Bearing Hub (베어링 허브의 트랜스퍼 열간 단조 공정 설계에 관한 연구)

  • Byun H.S.;Kim B.M.;Ko D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.993-996
    • /
    • 2005
  • This paper is concerned with transfer process on hot forging of bearing hub. Workers on hot forging have difficulty in working by high temperature and weight workpiece. And In conventional got forging of bearing hub, the material wasted to the flash accounts approximately 10% of the original workpiece. It is need manufacture automation and reduce the cost of forged products. Surface treatment of die and lubricant are investigated from experiment and FE-simulation for analysis of forming simulation. In order to hot forging process design considered flash thickness and blocker geometry and initial temperature of die and billet. This transfer process gave comparatively good results compared with actual products.

  • PDF

The Effects of the Process and Die Design for Precision Forging of Al Alloys (AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF