• Title/Summary/Keyword: forging application

Search Result 117, Processing Time 0.023 seconds

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

An Improved Alloy for Forged Rolls for Cold Rolling (내사고성이 우수한 냉간 압연용 단강 Roll 재질 개발)

  • Park, S.Y.;Lee, J.H.;Weon, J.C.;Lee, W.D.;Yoon, J.H.;Park, Y.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.65-71
    • /
    • 2009
  • The process of cold rolling is becoming more severe with the increase in the production of high tensile steel strip as a result of increased demand. Consequently, there is a need to develop work roll materials with better resistance to wear and roll failure. DOOSAN has developed an improved in-house 5%Cr alloy, New HSR1, with properties superior to the existing in- house 5%Cr alloy, Old HSR1. Test alloys were designed with controlled amounts of Si and Mn based on Old HSR1 and an optimum alloy was chosen based on thermal shock tests. A prototype work roll was manufactured with New HSR1, and properties of test specimens were evaluated. The results indicated that New HSR1 has better properties than Old HSR1. After application of New HSR1 work rolls, productivity increased due to advanced resistance to wear and roll failure.

  • PDF

A Study on the Optimal Stress Compensation to Dynamic Recrrystallization for the Estimation of Forming Loads (성형하중예측을 위한 재결저분율 보상의 최적조건 도출)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.131.1-134
    • /
    • 1999
  • The effect of dynamic recrystallization during hot forming process was implemented to a commercial FEM code by conditioned remeshing and remapping of sate variables. A datum strain for stress compensation was determined as a strain for maximum softening rate and was able to be formulated as a function of critical strain f($\varepsilon$). The validity of remapping criterion was examined by a series of mechanical tests and microstructural observation. The application of suggested datum resulted in better estimation of load-stroke during forging processes.

  • PDF

Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth (크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용)

  • Lee, Kang-Hee;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.270-275
    • /
    • 2008
  • The straight bevel gear for automobile part has been manufactured by the cold forging instead of the gear machining tool for the mass production. The application to CAD/CAM system has been necessary in order to develop the precision product quickly by forging through the minimization of trial and error and confirm the reproducibility. In the study, the straight bevel gear with the crown teeth has been modelled by the CAD/CAM system. The master gear after the gearing test has been machined after the modelling, NC data generation and verification. The die for forging and the jig for machining has been manufactured using the master gear.

A Study on the characteristics of the cast using forged insert (까단조형 인서트를 이용한 주물재의 특성연구)

  • Yim, H.S.;Park, H.K.;Lee, K.Y.;Kang, Y.K.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.354-357
    • /
    • 2008
  • In this study, the casting process using forged insert was applied to manufacturing a knuckle, in order to prove that application of casting process using forged insert is likely to get the effect of light weight and superior mechanical characteristic compared with existing casting products. Firstly, in the forging experiment, it was confirmed that the optimal configuration of the forged insert could be predicted by FE analysis. And by using FVM (Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the mechanical characteristic of the final casting product, the microstructual observation and hardness test were performed at the boundary zone between forging and casting part.

  • PDF

Flow Stress of A16061 at Elevated Temperature and Its Application to Forging Simulation for verification (Al6061의 고온변형특성 및 단조 시뮬레이션 적용을 통한 검증)

  • Eom, J.G.;Jang, S.M.;Lee, M.C.;Jung, S.J.;Park, Geon-Hyeong;Gwak, Yang-Seop;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.474-477
    • /
    • 2009
  • In this paper, flow stress of Al6061 is obtained by compression test in the range of temperature from $300^{\circ}C$ to $550^{\circ}C$ and effective strain-rate from 0.1/s to 20.0/s. The flow stress information is used to simulate an aluminum hot forging process. Non-isothermal simulation is carried out by a rigid-thermoviscoplastic finite element method. The predictions are compared with the experiments in terms of the deformed shape of material.

  • PDF

Process Design and Improvement in Cold Forging Process of a Inner Pulley for Automobile Air Conditioner (자동차 냉방기용 풀리의 냉간 단조 공정 설계 및 개선에 관한 연구)

  • 정덕진;김기홍;박세군;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.23-33
    • /
    • 1996
  • Forging of an inner pulley for compressor clutch assembly of car air conditioner is investigated in this study. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and the outer one, and to make uniform the hardness distribution in the forged product. Using the rigid-plastic finite element simulation, we design the optimal process conditions, which has a performing operation. The forged pulley is investigated by checking the hardness distribution and it is noted that the distribution has improved to be even and high enough for industrial application.

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.