• Title/Summary/Keyword: forging application

Search Result 117, Processing Time 0.023 seconds

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms (컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구)

  • Park, Jong-Ok;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

A Study on Die Wear Model considering Thermal Softening(II) -Application of Suggested Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(II) -마멸모델의 적용)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.282-290
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes tool life depends on wear over 70%. In this study finite element analyses are con-ducted to warm and hot forging by adopting suggested wear model. By comparison of simulation and eal profile of die suggested wear model. By comparison of simulation and real profile of die suggested model is verified.

  • PDF

Process Design of Pulley for Automobile Airconditoner in Cold Forging (자동차 냉방기용 내부 풀리의 냉간 단조 공정 설계)

  • 김동진;정덕진;김병민;최재찬
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.199-206
    • /
    • 1997
  • The inner pulley is an automobile component used as air conditioner clutch assembly. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and outer one, and to make uniform the hardness distribution in the forged product. In industry, the design of forging processes is performed based on experience-oriented technology, that is, designers experience and expensive trial and error. Using the rigid-plastic finite element simulations. we design the optimal process conditions, which has a preforming operation. Also the final product configuration of forging has to be designed again in view of metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that distribution has improved to be even and high enough for industrial application.

  • PDF

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Process Design of Cold Forging for Automobile Air Conditioner Pulley using a Solid Billet (중실소재를 이용한 자동차 냉방기용 풀리의 냉간 단조 공정 설계)

  • 정덕진;김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.329-337
    • /
    • 1997
  • Forging of an inner pulley for compressor clutch assembly of car air conditioner is investigated in this study. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and the outer one, and to make uniform the hardness distribution in the forged product. Using the rigid-plastic finite element simulation. we design the optimal process conditions, which has a performing operation. Also the final product configuration of forging has to be designed again in view of the metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that the distribution has improved to be even and high enough for industrial application.

  • PDF

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel (동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF