• Title/Summary/Keyword: forestry activity

Search Result 215, Processing Time 0.026 seconds

Interpretation of the Forest Therapy Process and Effect Verification through KeyWord Analysis of Literature on Forest Therapy (산림치유 효과 검증 연구의 주요어 분석을 통한 치유 발현과정 해석)

  • Park, Kyeong-Ja;Shin, Chang-Seob;Kim, Dongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • In this study, the validity of the forest therapy process, in which forest activities using forest therapy factors lead to immunity promotion and health promotion, was analyzed theoretically and qualitatively to refine and systemize the forest therapy concept. Research and analysis data were collected from the websites of institutions related to forest therapy; 33 theses and 33 original research articles from 2000 to March 2020 were searched for forest therapy key words, as well as the prize winning work of the 2016 forest therapy experience essay. A word cloud was generated by frequency of nouns and adjectives and from the key words in the web pages, theses, articles, and the forest therapy experience essay. Through interpretation of word frequency, the systemic flow of forest therapy was defined. The results suggest that the source of forest therapy's power was a positive experience of the forest and an improved attitude toward nature as well as forest therapeutic factors. The therapeutic effect is maximized through the forest healing program, leading to physical and mental resilience and resistance; consequently, health and immunity are promoted. From this study, forest therapy is proposed as "a health promotion activity for the psychological, physical, and spiritual resilience of the subjects through various environmental factors of the forest, positive experiences, and attitudes toward the forest."

A Comparative Study on Perception of Forest Activities Effects and Academic Stress of Nursing Students (간호대학생의 산림활동 효과 인식과 학업스트레스 비교 연구)

  • Park, Sun-Mi;Choi, Hyo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.167-174
    • /
    • 2021
  • The purpose of this study is to compare the perception of forest activities effects and academic stress of 3rd and 4th year nursing students. The data collection period is from April 15 to May 10, 2021, and the subjects of this study are nursing students, 179 third-graders students and 121 fourth-graders, totaling 300 students. Using the SPSS (ver.25) program, the collected data were analyzed as t-test for differences in forest activity effect recognition and academic stress, including the general characteristics of the subjects, and the correlation between each variable was confirmed. As a result of the study, the degree of perception of the forest activities effects was 3.89 points (out of 5 points) and the degree of academic stress was 3.41 points (out of 6 points). Comparison results by grade level, the current health status was positively perceived by the 3rd grade students, the perception of forest activities effects was higher in the 4th grade students, and the academic stress was higher in the 4th grade students. Perception of forest activities effects, grade, current health status, and appropriateness of forestry activities showed a positive correlation and an inverse correlation with academic stress. It may be concluded it will be necessary to develop practical programs that can practice forest activities to improve health and reduce academic stress.

Effect of Aqueous Extracts from Rubus coreanus Miquel and Angelica gigas Nakai on Anti-tumor and Anti-stress activities in mice (복분자와 당귀 열수추출물의 마우스를 이용한 항암 및 항스트레스 효과)

  • Kim, Jung-Hwa;Kim, Cheol-Hee;Kim, Hyou-Sung;Kwon, Min-Chul;Song, Young-Kyu;Seong, Nak-Sul;Lee, Seung-Eun;Yi, Jae-Seon;Kwon, Oh-Woung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.206-211
    • /
    • 2006
  • This study was performed to examine antitumor activities of Rubus coreanus Miquel and Angelica gigas Nakai extracts against sarcoma-180 and anti-stress activities in ICR mice. The variation of body weights of the 20 days of Rubus coreanus extracts-administrated mice group was very low. The survival rate (T/C %) of Rubus coreanus extract administrated group was 161% after 50 days from the inoculation of sarcoma-180 and the increment of their body weights was suppressed. Anti-stress effect of the extracts of R. coreanus and A. gigas were estimated by maeasuring blood chemical value and internal organs weight in ICR mice. The extracts of R. coreanus reduced the cholesterol and glucose to the normal level in the all stress animal models. The extracts of R. coreanus reduced the hypertrophy of the internal organs such as adrenal, spleen and liver to the regular level.

Effect of Temperature and Various Pre-treatments on Germination of Hippophae rhamnoides Seeds (갈매보리수나무 종자의 온도 및 여러 가지 전처리에 따른 발아반응)

  • Choi, Chung-Ho
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.132-141
    • /
    • 2012
  • This study was carried out to test seed germination responses to temperatures and pre-treatments in Hippophae rhamnoides, which has many abilities in antioxidant activity, soil improvement and erosion control. H. rhamnoides seeds were placed at 10, 15, 20, 25, 30 and $35^{\circ}C$ under light condition. As the results, germination percentage (GP) was the highest at 15 and $20^{\circ}C$, and mean germination time (MGT), germination rate (GR) and germination value (GV) were the highest at $25^{\circ}C$. Quadratic and linear regression model were used to determine the cardinal temperatures such as base ($T_b$), maximum ($T_m$) and optimum ($T_o$) temperature for germination. In quadratic regression model using PG, $T_b$, $T_m$ and $T_o$ was estimated as 0.6, 36.4 and $18.5^{\circ}C$, respectively, and temperature range for germination was $35.8^{\circ}C$. In linear regression model using GR, $T_b$, $T_m$ and $T_o$ was estimated as 8.3, 35.4 and $25.3^{\circ}C$, respectively, and temperature range for germination was $27.2^{\circ}C$. Germination properties were investigated after H. rhamnoides seeds were treated by prechilling (1, 2, 4, 6 and 8 weeks), stratification (2, 4, 6 and 8 weeks), solid matrix priming (seed : carrier : water = 5 : 1 : 7, 8, 9 and 10), osmo-priming (-0.25, -0.5, -1.0 and -1.5 MPa) and calcium chloride ($CaCl_2$) -priming (100, 200, 300 and 400 mM). The highest GP was observed in $CaCl_2$ 300 and 400 mM treatments, and MGT was the shortest in stratification 6 and 8 weeks treatments. GR and GV were the highest and GP was the second highest when seeds were prechilled for 1 and 2 weeks. Consequently, prechilling 1 or 2 weeks treatment was considered as the appropriate method when we contemplate qualitative and quantitative effects in seedling production.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.