• Title/Summary/Keyword: forest wetlands

Search Result 151, Processing Time 0.026 seconds

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Estimation of National Greenhouse Gas Inventory in Wetland (Flooded Land) (국내 습지(침수지) 온실가스 배출량 산정)

  • Lee, Sun Jeoung;Son, Yeong Mo;Kim, Raehyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.61-72
    • /
    • 2015
  • This study was reviewed the national greenhouse gas inventory report (NIR) of Annex I countries and estimated national greenhouse gas inventory on wetlands in Korea. Annex I countries submitted National Inventory Report which are focused on land converted to wetlands category and wetland remaining wetland (mainly peat lands) because IPCC did not suggest a formal methodology on flooded land. So we conducted a study on estimating of national greenhouse gas inventory in wetland (flooded land). The total annual $CO_2-eq.$ emission of wetland remaining wetland (flooded land) was ranged from 99.9 Gg $CO_2-eq.$ to 237.1 Gg $CO_2-eq.$ from 1990 to 2012. The $CO_2-eq.$ emissions was declined after peaking in 1995, however, it slightly increasing in recently years. The latest total $CO_2-eq.$ emission from flooded land was 117.7 Gg $CO_2-eq.$ in 2012 which was covered only 0.00002% of national GHG inventory. This means that flooded land is not key-category in Korea. We will consider an improvement for emissions of flooded land, if IPCC suggest formal or complementary methodology.

Classifying and Identifying the Characteristics of Wetlands in Korea -Cases on the Inland Wetlands- (우리나라 습지 유형별 분류특성에 관한 연구 -내륙 습지를 대상으로-)

  • Koo, Bon-Hak;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.11-25
    • /
    • 2001
  • A wetland is an ecosystem which is the most useful and highly-energetic transition area. This study has been carried out to classify and identify the various types of wetlands in Korea. The main objective of this study are 1) defining and classifying of wetlands, and 2) identifying the wetlands characteristics, and 3) studying cases on the natural wetlands such as Han river, DMZ(Demillitarized Zone), Upo wetland and Yong(Dragon) wetland. The results as follows: 1) Development of the indices for identifying and classifying wetlands in encompassing in such as Ramsar Conference, US NWI(National Wetlands Inventory), Hydrogeomorphic system. 2) Development on the classifying method on the wetlands in the level of supersystem, system, subsystem, class and subclass. The systems include Palustrine and Riverine, and the subsystems are Seasonal, Permanent(Palustrine) and Impersistent, Lower perennial, Impersistent (Riverine). 3) Finally, we find out Young wetland is Palustrine/Permanent/Slope/Persistent, and Upo wetland consists of various types of wetlands, those are, Palustrine/Permanent/Depression/Forest Deciduous, Palustrine/Permanent/Depression/Shrub Deciduous, Palustrine/Permanent/Depression/Persistent, Palustrine /Permanent/Depression/Hydrophytes, and Lacustrine/Permanent/Openwater/Hydrophytes. The taxonomy of this study stems from identifying and classifying wetlands with indices mainly based on hydrologic features and substrates. So, it is needed that consequent studies are to be performed with various viewpoints. And the studying cases were limited because of the restricted entrance into the DMZ, And, we selected only 10 crucial sites in Han river as the subject for wetlands regulation and creation. And, for advanced studies, drawing up inventory and mapping are necessary.

  • PDF

Biodiversity Conservation and Carbon Sequestration in Agroforestry Systems of the Mbalmayo Forest Reserve

  • Mey, Christian Boudoug Jean;Gore, Meredith L.
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.91-103
    • /
    • 2021
  • We conducted an analysis of agroforestry system efficiency to conserve biodiversity in the Mbalmayo Forest Reserve (MFR) between March 2018 and June 2018. A synthesis of forest fragmentation data observed on multiple strata and scale satellite imageries over 31 years, between 1987 and 2018 as well as, the use of both a floristic and a faunal surveys, revealed that although 29.28% of natural forests was fragmented and converted to agroforests landscapes, banana and cocoa based agroforest appeared to perform the most relevant records in carbon storage and to attract wild terrestrial and avifauna. Analysis of NDVI, NDWI and Iron Oxyde helped monitor the vegetation cover of the reserve, and differentiate natural and fragmented classes, majority of conserved forest wetlands and agroforestry systems, and a minority of natural dryland forest. Further analysis also revealed significant correlations between NDVI and Shannon Index, and between NDVI and carbon stock. Based on the NDVI value and the equation Y=3.827×X-1.587 (where Y for the carbon stocks and X for NDVI value), we estimated the total carbon stock of the forest reserve at about 99557.6 tonnes, and its mean value at about 8.491 tons/ha. Nevertheless, environmental efforts to sustainably manage agroforestry landscape appear to be a relevant key to conserve wild biodiversity and mitigate climate change at the level of the Mbalmayo Forest Reserve. If anthropogenic activities have deeply changed the reserve's natural landscape, reduced its carbon sequestration performance, and wildlife conservation status, forest wetlands appear to remain its most conserved places and the best refuge for wild fauna still occurring in diverse strata of the MFR.

Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands (기후변화가 습지 내 온실기체 발생과 미생물 군집구조에 미치는 영향)

  • Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • Global climate changes including elevated $CO_2$, drought, and global warming may influence greenhouse gas emissions in wetlands. A variety of microbial communities including denitrifiers and methanogens play a key role in determining such processes. In this paper we summarize current knowledge on the effects of climate changes on $CO_2,\;CH_4$, and $N_2O$ production and microbial communities mediating those processes in wetlands. Elevated atmospheric $CO_2$ and warming generally increase gas emissions, but effects of droughts differ with gas type and drying level. The responses of microbial community to climate changes in terms of composition, diversity and abundance are still in question due to lack of studies in wetlands. Based on the present review, it is suggested that future studies on microbial processes should consider microbial community and relationships between microbial function and structure with diverse environmental factors including climate changes. Such knowledge would be crucial to better understand and predict accurately any shifts in ecological functions of wetlands.

Plant Species Assemblages and Vegetation Composition of Wetlands Within an Upland Forest

  • Huh, Man-Kyu;Lee, Hak-Young;Moon, Sung-Gi
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Small wetlands in an upland matrix can support diverse vegetation composition that increase both local and regional species richness. In this study we characterize the full range of wetland vegetation in an upland forest landscape at Dumyeong-ri, Gijang-gun, Busan. This wetland index can be calculated with species data, or with community type data as performed. Classified community types were used to describe vegetation at three wetlands and adjacent areas. The communities contained 28 species of vascular plants and 28 species were identified four plant community types. The Pinus densiflora type was dominated by Pinus densiflora and contained only four species. None of the plots had high proportion of standing water. The Carpinus laxiflora type had high obligate upland species (OU) and facultative upland species (FU). The Rhododendron mucronulatum type grew in over half of the plots included Pinus densiflora and Alnus japonica. Some species bother swampy areas adjacent to site C. The Miscanthus sacchariflorus type consisted of seasonal wetlands. The three sites contained nine species with the strongest indicator species being Miscanthus sinensis var. purpurascens, Miscanthus sinensis, Echinochloa crus-galli, and Sagittaria aginashi. This type had the highest proportions of obligate wetland species. Plant species richness averaged 5.069. Shannon-Weaver index of diversity also varied among the community types (F=22.7, df=4, 115), with the types FU having significantly higher value (2.746) than the others (1.057 for type FW and 1.600 for type OU). Regional plans including all of the diverse types of wetland vegetation in upland forests will contribute substantially to the conservation of plant diversity.

Water Quality, Flora and Fauna of 7 Wetlands in Donghae City (동해시 7개 습지의 수질과 동식물상)

  • Han, Gab-Soo;Park, Jung Ho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.335-352
    • /
    • 2014
  • In this study, we investigated and analysed the water quality, distribution of the vegetation and the wildlife to seven wetlands in Donghae city. As a result, most of the wetlands was found to be very poor water quality and some specific pollutants from entering the wetland. A total of 234 taxa on vegetation were identified including 207 species, 24 varieties, 3 formaes, 168 genera and 69 families. 2 species were recorded as designated rare plant of Korea Forest Service. The naturalized plants were 27 species. The urbanization rate of naturalization index was 8.4% and 11.6% respectively. The number of benthic macroinvertebrate taxa was 35 species, 26 families, 12 orders, 5 classes and 3 phylums. Rare species were recorded 3 species. Taxa for fishes were 5 family and 5 species. Endangered wildlife was found 1 species. Most wetlands in Donghae city were the relatively small in size, and some wetlands were separately located from forest and river ecosystems. It was limited inflow and outflow of species into a wetland from the outside. However, various vegetation were found at whole wetlands and some special species also inhabited. The wetlands performed the role as a habitat of wild life.

Characteristics of Plant Community of Willow Forest in the Wetland Protection Areas of Inland Wetlands (습지보호지역 버드나무림의 식물군락 특성)

  • Cho, Kwang-Jin;Lim, Jeoncheol;Lee, Changsu;Chu, Yeounsu
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.201-212
    • /
    • 2021
  • In wetland protection areas, a phytosociological research was conducted on willow forests, which plays an important ecological and environmental role and is the main material for ecological restoration. A total of 61 relevés were collected according to the Z-M(Zürich-Montpellier) school's method and the characteristics of plant communities and the composition of the species were identified. A total of 9 plant communities including 237 taxa were differentiated. Willow species showing the high r-NCD(relative net contribution degree) value in study areas were Salix koriyanagi, Salix chaenomeloides, Salix triandra subsp. nipponica, Salix gracilistyla and Salix pierotii. Poaceae was the most diverse in species, followed by Asteraceae, Apiaceae, Polygonaceae and Fabaceae. Life form type of willow forests in wetland protection areas was determined to be Th(therophytes)-R5(non-clonal form)-D4(clitochores)-e(erect form) type. The naturalized plants and invasive alien species were identified as 24 taxa and 4 taxa, respectively. Naturalized and disturbance indices were 10.1% and 41.4%, respectively. The results of the site-species ordination by Non-Metric Multidimensional Scaling(NMDS), wetland types and altitude gradient were the main ecological factors determining the spatial distribution of plant communities. Diversity index and evenness index were high in mountainous palustrine wetlands with relatively high altitude, and the disturbance index, naturalized index and appearance rate of annual plant were high in riverine and lacustrine wetlands with low altitude.

The Status and Characteristics of Wetlands Created from within Abandoned Rice Paddy Fields in South Korea (유휴농경지에서 발생되는 습지의 현황 및 특성에 관한 연구)

  • Park, Mi-Young;Yim, Yu-Ra;Kim, Kwi-Gon;Joo, Young-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.1-15
    • /
    • 2006
  • As the imports of foreign agricultural products are liberalized and the consumption of agricultural products declines, abandoned rice paddy fields continues to rise. However, such abandoned rice paddy fields has not been precisely surveyed yet. In this backdrop, a necessity to develop technology to utilize such abandoned rice paddy fields has emerged. Utilization of abandoned rice paddy fields as wetlands may be a good example. This study aimed to survey the current status and characteristics of wetlands created within abandoned rice paddy fields by selecting abandoned rice paddy fields throughout the nation and conducting field surveys on the sites that had transformed into wetlands. The abandoned rice paddy fields almost transformed into wetland and the types of wetlands transformed from abandoned rice paddy fields were mainly Inland/Moutain/Depression/Abandoned rice paddy fields/Marsh/Phragmites communis community and Inland/Moutain/Depression/Abandoned rice paddy fields/Swamp/Salix koreensis community. Abandoned rice paddy fields that had transformed into wetlands was depending heavily on waterways for water supply than other reservoirs and lakes do. Abandoned rice paddy fields transformed into wetlands was most observed in mountainous area. Abandoned rice paddy fields are because agricultural land is no longer profitable due to international and social changes and is not cultivated as government policy. Wetland period and dimension originated from abandoned rice paddy fields are very various and its surrounding land its mostly forest and the next largest follow roads and rural community. The abandoned rice paddy fields transformed into wetlands is mostly deserted currently. Despite their value as wetlands, no restoration and utilization efforts are made in Korea today. Therefore, it is imperative to conduct a precise current status survey on these areas and introduce management and restoration plans at the government level in the case of important habitats.

A Study on the Development of Experiential Nature Education Program in the Urban Forest Park - A Case Study of Yeongheung Park in Suwon - (도시 산림공원의 체험형 자연교육 프로그램 개발 연구 - 수원 영흥공원을 대상으로 -)

  • Chang, Ye-Na;Kim, Sung-Hee;Han, Bong-Ho;Choi, Jin-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.6
    • /
    • pp.12-23
    • /
    • 2019
  • The purpose of this study was to develop and study an experiential natural education program that could emphasize the importance of the natural environment by providing natural experience opportunities using the natural resources of the urban forest parks using Youngheung Park in Suwon, Gyeonggi Province as a target site. The research target was limited to Suwon Yeongheung Park, which had the potential to become a place for education, where urban forest conservation and sustainable use already coexist. The natural education resources derived by surveying and analyzing the basic environment and the ecology of plants and animals in Suwon Yeongheung Park were organized to establish program goals, directions, and themes. Suwon Yeongheung Park is a water-rich forest that forms an ecological system of wetlands, including rice paddies, muknon wetlands, and dungbun, near a valley area. The U-shaped walkway was smoothly formed along the ridge and includes Doran-gil, which is among the Palochrome Road, designated by the city of Suwon. The soil is acidic, with a pH 4.40, due to urban pollution and acid rain, and is not good for plant growth. Most of the artificial forests, natural forests, and arable land were found using land use and extant life surveys. Old trees were distributed in artificial forests, the oak clusters in natural forests, and the fields and darrinones were distributed in the arable areas. As the forest vegetation declined, the cedar forest was underway, and the cedar trees and red bean pear trees were cultivated due to their adaptability to the urban environment. There are 13 large of 180 sacks, one being 109 centimeters in diameter, the largest silvery tree, and 105 oak trees, provide food and shelter for animals. Six species of waterfowl that used the 22 kinds of forest wetlands, while four species of amphibians and two species of reptiles reside in the wetlands. Natural Monument No. 327, Mauryuk, Class II Endangered Wildlife, was also observed in the wetlands. Eight other species of surface dragonflies and three species of butterflies were observed. By systemizing the resources, members, and characteristics of the forest ecosystems in Suwon Yeongheung Park based on five criteria, the program for a hands-on natural education was presented with the aim of understanding the urban forest ecosystem in Suwon Yeongheung Park, having an affinity with the city, and recognizing its relationship with the community and society. However, further research is needed as there are limitations of research on programs characterized by different ages and classes.