• Title/Summary/Keyword: forest vegetation classification

Search Result 329, Processing Time 0.034 seconds

A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data (Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고)

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.169-198
    • /
    • 1996
  • The objectives of this investigation are : 1. To analyze spectral signature and the associated vegetation index for geometric illumination conditions inf1uenced by low solar elevation and high slope orientations in mountainous forest. 2. To assess the accuracy of the spectral angle mapper classification for the a winter land cover in comparison with the maximum likelihood classification. 3. To produce the image of water quality and water properties that could be used to estimate the water pollution sources and the tide-included by turbid water in estuarine and coastal areas. These objectives are to characterize environmental and ecological monitoring applications of the Nak-Dong River Basin by using Fuyo-1 OPS VNIR data acquired on December 26, 1992. The results of this paper are as follows : 1. The spectral digital numbers and vegetation indexes (NDVI and TVI) of mountainous forest are higher on the slope facing the sun than on the slope hidden the sun under low sun elevation condition. 2. The spectral angle mapper algorithm produces a more accurate land cover classification of areas with steep slope, various aspects and low solar elevation than the maximum likelihood classifier. 3. The maximum likelihood classification images can be used for identifying the location and movement of both freshwater and salt water, regardless of geometric illumination conditions. 4. The color-coded density sliced image of selected water bodies by using the near-infrared band 3 can provide distribution of the water quality of the Lower Nak-Dong River. 5. The color-coded normalized difference vegetation index image of the selected mountain forest is suitable to classify winter vegetation cover types, i.e., forest canopy densities for slope orientations.

The Community Structure of Forest Vegetation in Mt. Gaya, Chungcheongnam-Do Province (충청남도 가야산 산림식생의 군집구조)

  • Yun, Chung-Weon;Lee, Chan-Ho;Kim, Hye-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.5
    • /
    • pp.379-389
    • /
    • 2007
  • This study was carried out to classify forest vegetation structure of Mt. Gaya from April to October in 2006 using phytosociological analysis methodology of Z-M schools. One hundred study sites(quadrat) were surveyed in the area. The forest vegetation was classified into 3 community groups such as Pinus densiflora community group, Cornus controversa community group and artificial forest group. P, densiflora community group was subdivided into 4 communities such as Rhododendron schlippenbachii community. Salix gracilistyla community, Meliosma oldhamii community and P. densiflora typical community. R. schlippendbachii community was subdivided into Potentilla dickinsii group(subdivided into Carpinus coreana subgroup and Melandrynum firmum subgroup) and R. schlippenbachiitypical group. Cornus controversa community group was also subdivided into 4 communities such as Hovenia dulcis community, Quercus aliena community, Ribes maximowicianum community and C. controversa typical community. Artificial forest type indicated 3 communities such as Larix leptolepis community, Pinus rigida community and Castanea crenata community. Accordingly, the vegetation pattern of the surveyed areas were classified into 3 community groups, 11 communities, 2 groups, and 2 subgroups and the forest vegetation was classified into 13 units in total. It is also believed that C. coreana subgroup and M. oldhamii community could be a source for a significant basic data for making vegetation hierarchy and forest distribution zone in the Korean peninsula. H. dulcis community was also considered to be one of the important genetic resources; therefore, those distribution areas are required to be institutionally protected and managed in the near future.

Classification of Degraded Peat Swamp Forest for Restoration Planning at Landscape Level Using Remote Sensing Technique

  • Hamzah, Khali Aziz;Idris, Azahan Shah;Parlan, Ismail
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Malaysia possesses about 1.56 million ha of Peat Swamp Forest (PSF). The PSF safeguard enormous biological diversity, while providing crucial benefits for the sustainable development of human communities. Numbers of threatened plant species are associated with the PSF, including the commercially important Gonystylus bancanus timber. To prevent significant losses of biodiversity, it is important to manage the PSF for both biological conservation and sustainable use. Equally important is to restore all degraded PSF in an attempt to ensure the PSF ecosystem is suitable for the vegetation to grow and rehabilitate back to the normal condition. Prior to plan any forest restoration program, there is a need to properly map the degraded PSF in order to estimate the forest conditions and determine the vegetations status. Most of the time this need to be done at a landscape level and requires a technology that can provide accurate, timely and reliable information for the planner to make decision. This paper describes a study using geospatial technology in combination with ground survey to classify the degraded PSF in South East Pahang Peat Swamp Forest (SEPPSF), Malaysia, into different degree of vegetation classes. With map accuracy of about 83%, the technique proved to be useful in delineating the different degree of PSF degradation from which the information can be used to properly plan forest restoration program in the area. The final output which is in the form of map can be used in developing a Restoration Master Plan for the degraded PSF areas.

Forest Vegetation Classification and Species Composition of Mt. Ilwol, Yeongyang-Gun, Korea (일월산 산림식생의 종구성적 특성)

  • Lee Jung-Hyo;Bae Kwan-Ho;Cho Hyun-Je
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.132-140
    • /
    • 2006
  • Forest vegetation classification and species composition of Mt. Ilwol, Yeongyang-Gun, Korea, were studied combining the Braun-Blanquet approach with numerical syntaxonomical analyses (TWINSPAN). Vegetation types and various ecological characteristics such as flora, constancy classes, species ratio of life-form, species diversity and importance value were analyzed. Sixty-eight samples were taken from a $100m^2$ square plot each. Forest communities were identified as two great types: arid landform of mountainside (AM) and humid fertility of piedmont and valley (HP). The former was divided into 3 communities (Rhododendron mucronulatum, Quercus variabilis, Hosta capitat community) and 2groups, and the latter into 3 communities (Tilia amurensis, Vitis coignetiae, Philadelphus schrenckii community) and 2 groups. Vegetation was classified into 8 units. Floristically, the most represented family was Compositae with 26 species. Species with percentage constance degree of more than 61% was Quercus mongolica (72.1%, IV); Carex siderosticat (III) and Fraxinus rhynchophylla (III) were 50.0 and 41.1%, respectively. Life-forms species ratios for trees, subtrees, shrub, vines, grominoids, forbs and ferns were 18.5, 5.7, 14.9, 6.6, 8.8, 42.4 and 3.1%, respectively, PH type showed from $1.70{\pm}0.50\;to\;1.97{\pm}0.57$ and AM type was from $1.40{\pm}0.18\;to\;1.62{\pm}0.20$ in species diversity; therefore, the former type showed higher species diversity than the latter, According to importance value analysis, Pinus densiflora, Quercus mongolica and Q. variabilis were higher in the tree layer, Q. mongolica in the subtree layer, Fraxinus sieboldiana, R. schlippenbachii, etc. in the shrub layer and Carex siderosticta, Carex humilis, etc. in the herb layer.

Vegetation structure and distribution characteristics of Symplocos prunifolia, a rare evergreen broad-leaved tree in Korea

  • Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.

Classification of Forest Vegetation Type and Environmental Properties in Limestone Area of Korea (석회암지대 산림식생의 유형과 환경특성)

  • Yun, Chung-Weon;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The limestone area covers the narrow range of the Korean Peninsula, and it consists of a peculiar ecosystem and topography. Therefore, this study on limestone area was carried out classification of vegetation type, physicochemical properties of forest soils and correlation between environment factors and vegetation types in order to furnish fundamental data for the forest management of limestone area. Forest vegetation was classified into two community groups such as Quercus variabilis community group and Quercus mongolica community group, and it was classified into eight vegetation units. Soil texture of survey sites showed largely silt loam and soil pH indicated the value of mean 7.55 in the A layer of soil profile. Content of exchangeable cation such as calcium ion ($Ca^{2+}$) and magnesium ion ($Mg^{2+}$) showed $26.04cmol_{c}/kg$ and $2.93cmol_{c}/kg$, respectively, which was about ten times higher than average of other regions of Korea. According to corelation between environmental factors and vegetation units, Q. variabilis community group was positively correlated to soil pH, slope degree and the rate of bare rock, and content of calcium ion ($Ca^{2+}$), and then Q. mongolica community group was positively correlated to altitude, respectively.

Selection of the Optimum Global Natural Vegetation Mapping System for Estimating Potential Forest Area (지구상(地球上)의 잠재삼림면적(潜在森林面積)을 추정(推定)하기 위한 적정(適定) 식생도제작(植生圖製作) 시스템의 선발(選拔))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.25-34
    • /
    • 1997
  • The optimum global natural vegetation mapping(GNVM) system was selected as a series of the study to estimate potential forest area of the globe. To select the system, three types of GNVM systems which are simple system with Light Climatic Dataset(LCD), altitude-allowed system with LCD and altitude-allowed system with Heavy Climatic Dataset(HCD) were established and compared. The three GNVM systems spherically interpolate such spotty climate data as those observed at weather stations the world over onto $1^{\circ}{\times}1^{\circ}$ grid points, product vegetation type classification, and produce a potential natural vegetation(PNV) map and a PNV area. As a result of comparison with three GNVM systems, altitude-allowed LCD system represented natural vegetation distribution better than other versions. The difference between the simple system versus the one with altitude allowance indicated that the simple version tends to over-represent the warmer climate areas and under-represent cold and hostile climate areas. In the difference between altitude-allowed versions of LCD and HCD, HCD version tended to overestimate moist climate areas and to underestimate dry climate areas.

  • PDF

Vegetation Classification, Species Diversity, and Structural Characteristics of Coniferous Forest in Baekdudaegan Protected Area, Korea (백두대간 보호지역 침엽수림의 식생분류, 종다양성 및 구조적 특성)

  • Cho, Hyun-Je;Kim, Jun-Soo;Cho, Joon-Hee;Oh, Seung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.516-529
    • /
    • 2021
  • Coniferous forests in the Baekdudaegan protected area are gradually losing their landscape diversity and uniqueness along with their ecological stability due to changes in vegetation composition and structures caused by various disturbance factors, such as climate change, vegetation succession, and human interference. This study provides basic data for establishing a comprehensive conservation plan for coniferous forests in the Baekdudaegan protected area. We classified the vegetation unit types using the Zurich-Montpellier School of Phytosociology and two-way indicator species analysis methods and analyzed the species diversity and structural characteristics based on the vegetation information of 755 stands collected in the natural resources change survey of the Baekdudaegan mountains (2016 to 2020) by the Korea Forest Service. Therefore, the vegetation of the coniferous forests of theBaekdudaegan protected area was classified into 15 types under the vegetation unit hierarchy of two community groups, four communities, seven sub-communities, and 14 variants. Furthermore, we compared the total coverage among vegetation types, importance values, constancy classes, life-forms, and diversity indices. Additionally, the average total coverage and number of species per 100 m2 of all coniferous forests were 232% and 21 species, respectively, with the species diversity and dominance indices averaging 1.907 and 0.222, respectively.

NEW CLASSIFICATION TECHNIQUES FOR POLARIMETRIC SAR IMAGES AND ASSOCIATED THREE-COMPONENT DECOMPOSITION TECHNIQUE

  • Oh, Yi-Sok;Chang, Geba;Lee, Kyung-Yup
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • In this paper, we propose one unsupervised classification technique using the degree of polarization (DoP) and the co-polarized phase-difference (CPD) statistics, instead of the entropy and alpha. It is shown that the DoP is closely related to the entropy, and the CPD to the alpha. The DoP explains the feature how much the effect of multiple reflections is contained. Hence, the DoP could be used as an important factor for classifying classes. The CPD can also be computed from the measured Mueller matrix elements. For the smooth surface scattering, the CPD is about $0^{\circ}$, and for dihedral-type scattering, the CPD is about $180^{\circ}$. A DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification results are compared with the existing Entropy-alpha diagram as well as the IPL-AirSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest. Based on the DoP and CPD analysis, a simple three-component decomposition technique was also proposed.

  • PDF

Riparian forest and environment variables relationships, Chichibu mountains, central, Japan (일본 Chichibu산지 계반림의 입지환경)

  • Ann, Seong-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.