최근 14년간('91-'04) 산림청에 보고된 전국 산불발생 통계자료를 변수로 SPSS Ver 13.0 프로그램을 이용하여 연도별, 월별, 시간대별, 요일별, 지역별, 피해 수종별, 원인별, 피해면적별, 진화 소요시간별 빈도분석을 실시하였다. 그 결과 연도별 산불발생건수는 2001년도에 가장 많았고, 월별로는 매년 4월에, 시간대 별로는 $14{\sim}15$시 사이에, 요일별로는 일요일에, 지역별로는 경북 > 강원 > 전남 > 경기 순으로, 피해 수종별로는 소나무림에서 가장 많이 발생하였다. 또한 원인별로는 입산자실화와 논 밭두렁소각 등이 주요 원인이지만 최근에는 방화에 의한 산불발생이 증가하는 경향이었다. 피해면적별로는 5 ha 미만의 소형 산불이 93.7%로 가장 많이 발생하는 경향이었고, 30 ha 이상의 대형 산불은 강원도 지역이 44.2%로서 가장 많이 발생하였다. 진화소요 시간별로는 30 ha 이상의 대형 산불(1,113분)이 5 ha 미만의 소형 산불(148분)보다 7.5배 더 소요되는 것으로 나타났다. 특히 대형 산불에 의한 피해면적은 건당 평균 470 ha로 나타났다.
미국 동부에 위치한 버지니아 주의 최근 2001년 산림자원에 대한 통계를 검토해 본 결과, 산림면적은 15.8백만 에이커(6.4백만ha)로 전체 토지의 62%를 차지하고, 산림의 77%가 사유림, 78%가 활엽수인 것으로 파악되었다. 산림의 총 입목 재적량은 265억$ft^3$으로 평균 입목축적이 $1.677ft^3/ac(117m^3/ha)$, 연 목재생산량은 543백만$ft^3$인 것으로 나타났다. 산림 생장량은 벌채량에 비해 연 271백만$ft^3$씩 증가하고 있는 반면, 산림면적은 최근 연 평균 20.000에이커(8.094ha)씩 감소되고 있는 것으로 나타났다. 버지니아 주 임산업의 경제규모는 1999년 기준 년 $254억에 해당하며, 산림관련 종사자는 약 248,000명인 것으로 추정하고 있다. 임산업 중 산림벌채로부터 매년 $863백만에 해당하는 소득을 창출하고 있으며, 이는 다른 농림축산 작물 통계 중 가장 높은 비율(28%)을 차지하는 것으로 나타났으며, 산림소유자들은 그들의 산림으로부터 매년 $345백만의 부가가치 수익을 얻는 것으로 파악되었다. 전체적으로 버지니아 주 산림의 경제적 및 공익적 가치는 연 간 총 $305억(약 30조원)이 되는 것으로 추정하고 있으며, 이 중 휴양평가액은 $30억, 공기정화 및 탄소고정평가액은 $19억인 것으로 나타났다.
기후변화에 대응하기 위해 산림의 탄소저장 능력을 정량적으로 이해하기 위한 연구가 국내외적으로 요구되고 있다. 본 연구에서는 지상부바이오매스의 공간적 분포현황을 제공하기 위해 국가산림자원조사 표본점 단위로 계산된 지상부바이오매스를 임상도를 이용하여 공간규모를 확장(upscaling)하는 기법을 개발하고자 한다. 이를 위해 국가산림자원조사 자료를 이용하여 우세/준우세목 수고와 수관 밀도를 설명변수로 하는 지상부바이오매스 회귀모델과 영급을 설명변수로 하는 우세/준우세목 수고 회귀모델을 개발하였다. 그리고 이 회귀모델들과 임상도 속성정보(수종, 수관밀도, 영급)을 결합하여 지상부 바이오매스 공간분포를 추정하였다. 그 결과 단양군 산림의 지상부바이오매스는 6,606,324 ton으로 추정되었고, 표본점 기반 통계에 의한 추정치와 유의적인 차이가 없는 것으로 나타났다. 임상도를 활용하는 본 기법은 손쉽게 대면적에 대한 바이오매스를 추정하는 장점이 있는 반면, 임상도의 주요 속성이 범주형이기 때문에 산림바이오매스 공간 변이의 세밀한 추정에는 한계가 있었다.
Journal of the Korean Data and Information Science Society
/
제28권1호
/
pp.29-37
/
2017
산림경영 계획을 위한 필요한 산림재적을 보다 효율적으로 추정하기 위해서 다양한 연구가 요구되어져 왔는데, 이러한 산림구조에 관한 연구는 주로 현장조사와 위성영상을 이용하여 이루어진다. 현장조사를 통한 연구는 비교적 정확하나 시간과 비용이 많이 들 뿐 아니라 접근의 용이성이 떨어지는 지역이 있기 때문에, 넓은 지역의 조사가 어렵다는 단점이 있다. 최근에는 항공기에서 발사된 레이저 펄스가 반사되어 돌아오는 시간을 측정하여 대상의 3차원 좌표를 얻는 LiDAR (Light Detection and Ranging) 기술을 활용하여 획득한 정밀한 수치형자료를 이용한 산림의 구조에 관한 연구가 이루어지고 있다. 일반적으로 산림재적을 추정하기 위해서 LiDAR자료를 이용한 수고자료와 산림 재적에 대한 회귀모형의 중요성이 점차 높아지는데, 국내의 경우 수목의 종류와 그 분포가 다르기 때문에 회귀모형만으로 재적을 추정하는 데 한계가 있다. 따라서 본 논문에서는 산림의 수고와 흉고직경을 측정하여 재적값을 추정하고 산림의 공간효과를 고려한 계층적 베이지안 분석을 통해 관측되지 않은 전체 산림재적에 대한 추정을 하고자 한다.
본 연구에서는 미세먼지 $PM_{10}$의 4가지 분류 등급인 '좋음, 보통, 나쁨, 매우 나쁨' 그리고 2가지 분류 등급인 '좋음 혹은 보통, 나쁨 혹은 매우 나쁨'을 예측하기 위해서 심층 신경망모형을 사용하였다. 2010년부터 2015년까지 국내 6개 대도시 지역에서 관측한 일별 미세먼지 데이터에 대하여 기존 분류기법인 신경망모형, 다항 로지스틱 회귀모형, Support Vector Machine, Random Forest을 적용했을 때에 비해서 심층 신경망모형의 정확도는 더 높아졌다.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.255-264
/
2016
Classification is a predictive modeling for a categorical target variable. Various classification ensemble methods, which predict with better accuracy by combining multiple classifiers, became a powerful machine learning and data mining paradigm. Well-known methodologies of classification ensemble are boosting, bagging and random forest. In this article, we assume that decision trees are used as classifiers in the ensemble. Further, we hypothesized that tree size affects classification accuracy. To study how the tree size in uences accuracy, we performed experiments using twenty-eight data sets. Then we compare the performances of ensemble algorithms; bagging, double-bagging, boosting and random forest, with different tree sizes in the experiment.
그동안의 고객 행동에 대한 예측은 주로 고객이 가지는 고정적인 특성을 이용해왔다. 최근에는 점차 고객들의 활동이 오프라인에서 온라인으로 이동하면서 각 고객의 웹 로그를 추적하는 일이 가능해졌다. 그러나 방대한 양의 웹 로그 데이터를 수집할 수 있게 된 반면, 이에 대한 연구는 로그 데이터를 정리하거나 기술적인 특성만을 설명하는 것에 그쳤다. 본 연구에서는 웹사이트 Kaggle에서 제공하는 Airbnb 고객들의 성별, 연령 등의 기본 정보 및 웹 로그가 포함된 데이터셋을 이용하여 첫 숙소 예약까지 걸리는 개인의 의사 결정 시간을 예측하였다. Lasso, SVM, Random Forest, XGBoost 등 다양한 방법론을 활용하여 최적의 모형을 찾고, 웹 로그 데이터의 유무에 따른 예측 오차를 비교하여 웹 로그의 효용성을 확인하였다. 결과적으로 오분류율이 약 20%로 낮은 랜덤 포레스트 분류모형을 최적모형으로 선택하였다. 또한, 웹 로그 데이터를 이용하여 고객 개개인의 행동을 예측한 결과 사용하지 않은 경우와 비교해 예측의 정확도가 최대 두 배 더 높아진 것을 확인할 수 있었다.
제5차 국가산림자원조사는 국가단위의 산림자원 통계량을 산출하기 위해 설계되어 2006년부터 야외 표본점 자료를 수집하고 있다. 하지만, 표본의 개수가 적은 소면적 시군구의 산림통계를 산출하기 위해서는 보정자료를 이용하는 소면적 추정기법의 적용이 요구된다. 본 연구에서는 야외 표본점의 위치정보를 활용할 수 있는 공간통계기반 합성추정법을 적용하여 소면적 시군구의 임상별 산림면적 및 ha당 평균축적 등을 추정할 수 있는 방안을 제시하기 위해 수행하였다. 먼저 조사된 표본점은 수종별 흉고단면적의 비율에 의해 임상별로 사후층화되었다. 합성추정법을 적용하기 위하여 목표 시군과 인접하는 시군들을 하나의 가상 시군으로 설정한 후, 이러한 가상 시군에 포함되는 표본점 자료를 산림통계량 산출에 이용하였다. 합성추정법에 의한 임상별 비율은 임상도와 차이가 있는 것으로 나타났다. 한편, 합성추정법에 의한 임상별 ha당 평균축적은 표준오차가 ${\pm}3.5\;m^3/ha{\sim}{\pm}7.7\;m^3/ha$로 직접추정에 의한 표준오차(${\pm}7.8\;m^3/ha{\sim}{\pm}24.7\;m^3/ha$)보다 낮아 상대적으로 정확한 추정치를 나타내었다.
Shaffer, Leslie B.;Young, Timothy M.;Guess, Frank M.;Bensmail, Halima;Leon, Ramon V.
International Journal of Reliability and Applications
/
제9권1호
/
pp.53-70
/
2008
In this paper, we discuss the plethora of uses for the software package R, and focus specifically on its helpful applications in reliability data analyses. Examples are presented; including the R coding protocol, R code, and plots for various statistical as well as reliability analyses. We explore Kaplan-Meier estimates and maximum likelihood estimation for distributions including the Weibull. Finally, we discuss future applications of R, and usages of quantile regression in reliability.
Guess, Frank M.;Edwards, David J.;Pickrell, Timothy M.;Young, Timothy M.
International Journal of Reliability and Applications
/
제4권4호
/
pp.157-170
/
2003
In this paper we apply statistical reliability tools to manage and seek improvements in the strengths of medium density fiberboard (MDF). As a part of the MDF manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customer′s specifications. Workers perform these tests over sampled cross sections of the MDF panel to measure the internal bond (IB) in pounds per square inches until failure. We explore both graphically and statistically this "pressure-to-failure" of MDF. Also, we briefly comment on reducing sources of variability in the IB of MDF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.