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Abstract

Classification is a predictive modeling for a categorical target variable. Various clas-
sification ensemble methods, which predict with better accuracy by combining multiple
classifiers, became a powerful machine learning and data mining paradigm. Well-known
methodologies of classification ensemble are boosting, bagging and random forest. In
this article, we assume that decision trees are used as classifiers in the ensemble. Fur-
ther, we hypothesized that tree size affects classification accuracy. To study how the
tree size influences accuracy, we performed experiments using twenty-eight data sets.
Then we compare the performances of ensemble algorithms; bagging, double-bagging,
boosting and random forest, with different tree sizes in the experiment.

Keywords: Bagging, boosting, classification, decision tree, double-bagging, ensemble,
random forest.

1. Introduction

Classification is defined as a model of prediction for a categorical target variable. There
are several methods of classifier algorithms which are in popular. Logistic regression, linear
discriminant analysis (LDA), and quadratic discriminant analysis (QDA) are typical sta-
tistical methods. Complicated methods are also used in common, such as neural network,
support vector machine (SVM) and decision trees.

In classification ensemble method, many trained classifiers are combined to make a final
prediction (Dietterich, 2000). Ensemble methods perform better than a single classifier in
general (Hansen and Salamon, 1990). Many scholars have contributed to improving the
accuracy of classification ensemble in machine learning and statistics community (Breiman,
1996a; Freund and Schapire, 1996; Bauer and Kohavi, 1999; Shim and Hwang, 2014). Three
usual ensemble methods, Boosting (Schapire, 1990; Freund and Schapire, 1996), Bagging
(Breiman, 1996a), and Random Forest (Breiman, 2001), have received remarkable attention
and are widely used. These methods implemented with resampled or reweighted training
data sets from the original data and a classifier was applied on each of them repeatedly.
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2. Ensemble methods and previous research

Boosting has been developed to improve the performance of any weak learning algorithm
that needs only to be mildly better than a random guess. From the performance of previous
classifiers, boosting changes the distribution of the training data set flexibly. Then, boosting
takes a weighted majority vote of their predictions. The most well-known method is Ad-
aBoost (adaptive boosting) by Freund and Schapire (1996), and later Schapire and Singer
(1999) generalized it. Furthermore, the multiclass AdaBoost algorithm, which extended from
binary to multiclass with the forward stagewise estimation method, is suggested by Zhu et
al. (2009). In this paper, we use multiclass AdaBoost algorithm described in Zhu et al.
(2009). We show the algorithm for multiclass AdaBoost in Table 2.1.

Table 2.1 Multiclass AdaBoost algorithm

Given:

e (z1,¢1),...; (Tn,cn) : a set of training data, where the input z; € RP and the output ¢; € {1,...,K}
e K : number of classes

e B : number of classifiers in Boosting

e C(z) : classification rule, where C(z) : z— 1,...,.K

Procedure:
1. Initialize the observation weights.
w;=1/n,i=1,..,n.

2. Forb=1to B
(a) Fit a classifier T(") (z) to the training data using weights w;.
(b) Compute

err® = 35w, - I(e; # T® (2))/ 3 w;
i=1 =1

(c) Compute

a® =log((1 — err®)/err®) 4+ log(K — 1).
(d) Set

w; + w; - exp(a®I(c; #TO (x4))), i=1,..,n.
(e) Renormalize w;, ¢=1,...,n.

3. Aggregate the B train classifiers using weighted vote.
B
C(z) = argmaz;, 3 o®) . [(TO®) (z) = k).
i=1

The bagging algorithm (Breiman, 1996a) generates the classifiers in ensemble by using
bootstrap samples. Each of them is established by random sampling, with replacement, the
same number of instances as the original data. Then the final classification, using the clas-
sifiers in ensemble, is obtained by simple majority voting. Table 2.2 shows the algorithm
for bagging. Usually, bagging constructs more accurate classifiers than a single classifier.
When bootstrap samples are made from the original training set, some of the original ex-
amples may be selected several times while others may not be selected at all. Regarding
each bootstrap sample, an average of approximately 63% of unique training individuals was
selected while the size remained unchanged. The rest 37% of training sets can be used to
produce more accurate classification method. It is referred as the out-of-bag (OOB) sample
(Breiman, 1996b).
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Table 2.2 Bagging algorithm

Given:

e [ : training data set composed of n instances

e K : number of classes

e B : number of classifiers in Bagging

e C(z) : classification rule, where C(z) : z— 1,...,.K

Procedure:
1. Generate B bootstrap samples L1, ..., Lp from the original training data set L.

2. Construct train classifiers Cp(z),b =1, ..., B from each of L; samples.

3. Aggregate the B train classifiers using simple majority vote.

B
Cp(x) = argmaz; > I(Cp = j), forj€1,.. K.
b=1

More recently, random forest (Breiman, 2001) was established as an ensemble method to
combine tree classifiers such that each level of trees depends on the values of their features,
which are chosen among the features sampled independently. In particular, during the con-
struction of the tree, the chosen split is no longer the best split among all features when
splitting a node. Instead, the split is the best one among a random subset of the features.
Because of this randomness, the bias usually slightly increases, but its variance decreases
due to averaging effect. Table 2.3 describes the random forest algorithm.

Table 2.3 Random forest algorithm

Given:

e [ : training data set composed of n instances

e K : number of classes

e B : number of classifiers in Random Forest

e C(z) : classification rule, where C(z) : z— 1,...,K

Procedure:
Forb=1to B
1. Generate B bootstrap samples L1, ..., L from the original training data set L.

2. Grow a random forest tree using a random feature selection from bootstrapped data
: randomly select v/n or n/3 predictors at each node and split the data using the best predictors
where n is the number of variables in x.

3. Construct train classifiers Cy(z), b = 1, ..., B from each ensemble of trees.

4. Aggregate the B train classifiers using simple majority vote.

B
Cp(z) = argmaz; > I(Cy(z) = j), for j € 1,..., K
b=1

Furthermore, some researchers have designed hybrid ensemble methods to improve the
accuracy substantially. Hothorn and Lausen (2003) suggested double-bagging, which is the
combination method of LDA and a classification tree as the base model of bagging. They
used the estimated coeflicients of the linear discriminant function from the out-of-bag (OOB)
sample, and then the corresponding discriminant scores from in-bag sample contribute to
classification tree modeling as additional predictors. Table 2.4 shows the double-bagging
algorithm.
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Table 2.4 Double-Bagging algorithm

Given:

e [ : training data set composed of n instances

e K : number of classes

e B : number of classifiers in Double-Bagging

e C(z) : classification rule, where C(z) : z— 1,...,.K

Procedure:
1. Draw B random samples L1, ..., Lp with replacement from the original training data set L and

let X(®) denote the matrix of predictors from Ly, for b= 1, ..., B.

2. Compute an LDA using the out-of-bag sample L\ Ly, that gives a px (K — 1) matrix Z(®), where the
columns are the coefficients of the linear discriminant functions.

3. Construct the classifier Cy(x) using the original predictor variables as well as the discriminant variables
of the bootstrap sample (L, X(b)Z(b)) from each of L; samples.

4. Tterate steps (2) and (3) for b= 1,..., B bootstrap samples.

5. Aggregate the B train classifiers using simple majority vote.

B
Cp(z) = argmaz; > I(Cp(z) =j), for j€1,..,. K
b=1

3. Effect of tree size on ensemble methods

In this research, we study the optimal size of decision trees on the performance of the
classification ensemble methods where decision trees are used as classifiers. We define the
tree size as the depth of the decision tree, which is the length of the longest path from a
root node to a terminal node. For example, the Figure 3.1 has the tree size of 3.
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Figure 3.1 A decision tree with size of 3

Probably, the most common tree size in boosting is the number of categories of target
variables. For example, if four categories of target variable exist, then the boosting uses the
depth of four. Kim et al. (2012) studied this issue for boosting algorithms and provided
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a guideline. The previous research suggested the model for estimating the right tree size
suitable for the boosting algorithm, using variables that can explain the nature of a given
dataset. The suggested model reveals that the optimal tree size for a given dataset can be
estimated by the error rate of stump tree, the number of classes, the depth of a single tree,
and the gini impurity (Kim et al., 2012). Here, stump tree denotes a tree with two leaf
nodes, or which has only one tree size. Table 3.1 describes the modified multiclass AdaBoost
algorithm with tree size selection step.

For bagging and random forest, however, there are no typical rules for choosing the tree
size. Depending on the parameters that the developer specified before fitting, each algorithm
uses different tree sizes that result in varied accuracy. This motivated us to study the effect
of tree size on various ensemble methods, which seem to have diverse trends.

To explore all possibilities, we consider every tree sizes. In other words, as setting parame-
ters of classification ensemble model, we set the tree size with many candidate values. Then
we construct the ensemble of decision trees. Since each data set has its own optimal tree
size, we want to figure out a rule that governs the optimal tree size determination.

Table 3.1 Modified multiclass AdaBoost algorithm (tree size selection step included)

Given:

e (z1,¢1),..., (Tn,cn) : a set of training data, where the input z; € RP and the output ¢; € {1,...,K}
e K : number of classes

e C(z) : classification rule, where C(z) : z— 1,...,.K

Procedure:
1. Initialize the observation weights.
w; =1/n,i=1,...,n.

(a) Fit a classifier T(®) (x) to the training data using weights w;.
(1) Find the following values for the given dataset.
StumpErr : stump tree error rate / root node error rate
Depth : tree size of unpruned tree

gini : impurity of the given dataset 1 — f p?, where p; is the proportion of ith class
i=1
(2) Find the appropriate tree size D = int(D).

D = —1.4820 + 1.4807 - Depth — 1.4051 - Depth - I + 9.7583 - ging - [
1 if StumpErr < 0.7882
0 if StumpErr > 0.7882
(3) Fit a classifier 7(®) (z; D), which has trees of size D, to the training data using weights w;

(b) Compute
n T
err® = S w; - I(e; # TO (x4))/ 3 w;.
i=1 i=1
(¢) Compute
a® = log((1 — err®)/err(®) 4+ log(K — 1).
(d) Set
w;  w; - exp(a®I(c; # T®) (), i=1,..,n.
(e) Renormalize w;, i=1,...,n.

where, I =

3. Output.
B
C(z) = argmaz;, 3 o®) - [(TO) (z) = k).
i=1
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4. Experimental design

Extending previous experiment of the tree size effect on boosting (Kim et al., 2012), we
applied the idea to other ensemble methods; bagging, double-bagging, and random forest, in
an empirical study. The experiment is conducted based on 28 actual datasets, which mostly
come from the UCI Data Repository (Asuncion and Newman, 2007). Table 4.1 refers to the
descriptions of the datasets. To handle the missing data in some of datasets, we replace with
column medians for numeric variables and the most frequent levels for categorical variables.

For each dataset, we control the tree sizes from 1 to 10 for each of ensemble methods, and
compared the accuracies. To compare the performances fairly, all the ensemble methods are
run on the same 10-fold cross-validation training data. We also repeat the cross-validation
50 times to remove the effect of random seeds. Different seed numbers are assigned on each
iteration for stable performance. An average of 50 cross-validation accuracy outcomes for
each tree sizes on each ensemble method is calculated. In the experiment, we use an ensemble
size of 100, which means 100 decision trees are combined.

Table 4.1 Dataset description

Data Description f instances f classes f variable source

bew Brest Cancer Wisconsin 699 2 10 UCI

bld Liver Disorders 345 2 6 Kwak and Kim (2014)
bod Body Dimension 507 2 24 Heinz et al. (2003)
bos Boston Housing 506 3 14 UCI

cmc  Contraceptive Method Choice 1473 3 9 UCI

col Horse Colic 368 3 27 UCI

cre Credic Approval 690 2 15 UCI

cyl Cylinder Bands 540 2 35 UCI

der Dermatology 366 6 33 UCI

dia Diabetes 532 2 7 Loh (2009)

fis Fish 159 7 7 Kim and Loh (2003)
ger Germa Credit 1000 2 20 UcClI

gla Glass 214 6 9 UCI

hea Statlog (Heart) 270 2 13 UCI

int Chessboard 1000 2 10 Kim et al. (2012)
ion Tonosphere 351 2 34 UCI

iri Iris 150 3 4 UCI

lak Lakes 259 6 16 Loh (2009)

led LED Display 6000 10 7 UCI

pid Pima Indians Diabetes 768 2 8 UCI

pov Poverty 97 6 6 Kim and Loh (2001)
sea Vocalisation of Harp Seals 3000 3 7 Terhune (1994)
spe SPECTF Heart 267 2 44 UCI

usn Usnews 1320 3 27 Statlib (2010)
veh Statlog (Vehicle Silhouettes) 946 4 18 UcCI

vol Volcano 1521 6 6 Loh (2009)

vot Congressional Voting Records 435 2 16 UCI

vow Vowel Recognition 990 11 10 UCI

For accuracy comparison, CART algorithm (Breiman et al., 1984), the most famous deci-
sion tree algorithm, is employed as a base classifier, except that LDA is used in conjunction
with CART in double-bagging methods. Comparisons are run under R environment. RPART
(Therneau and Atkinson, 1997) is a CART implementation under R. We programmed bag-
ging and double-bagging using RPART as a classifier. We use ‘randomForest’ package (Liew
and Wiener, 2002) under the R environment to practice the random forest (Breiman, 2001).
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To control the tree size setting on ensemble methods, we use ‘rpart.control’, which handles
the aspects of the RPART fit. For random forest, specifically, we assign the maximum node
through setting ‘maxnodes’ argument in that package due to different package developers.
We implement two ways of comparison. First, we use relative mean accuracy. Next, we im-
plement the paired t-test using 50 cross-validated accuracies for each of the 28 datasets. To
compare the performance fairly, a single tree with a pruning option is used as a baseline and
compared with the outcome of the ensemble methods.

5. Accuracy comparison

We demonstrate the relative mean accuracy by increasing the tree size. In Figures 5.1 and
5.2, a horizontal axis refers to tree size for each ensemble method. A vertical axis refers to
the relative mean accuracy, which is the accuracy of an ensemble method for tree size over
the accuracy of stump tree.
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Figure 5.1 Relative mean accuracy of different tree sizes for Bagging, Double-Bagging, and Random
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Figure 5.2 Relative mean accuracy of different tree sizes for boosting
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First, the tree size may have a significant impact on improving the performance of ensemble
trees. From the Figures 5.1 and 5.2, even though the boosting experiment shows a different
behavior on accuracy between tree sizes among some datasets, other ensemble methods do
not show remarkable differences. Second, as increasing the tree size, performance patterns are
diverse for each dataset. However, unlike the boosting result, the larger tree size generally
gives more accurate results under bagging, double-bagging, and random forest ensemble
scheme. Finally, on a fixed data set, similar patterns are found for bagging, double-bagging,
and random forest. For instance, the accuracy of ensemble trees increase very suddenly as
tree size increases in some dataset: ‘der’, ‘led’, ‘veh’, and ‘vow’.

6. Significance

Since we use the same 10-fold cross-validated data in the experiment, the cross-validation
accuracy of each classification method can be compared pairwise. In addition, due to re-
peating the cross-validation 50 times, there are 50 paired accuracies to be compared. We
implement the paired t-tests to examine the pairwise differences between ensemble methods
and a single pruned tree. Figure 6.1 represents the 28 test-statistics of the paired t-test using
all data sets. In the boxplot, a larger positive t-statistic indicates better accuracy for one
method over the other. Tree sizes (1, 2, ..., 10) is used to determine if a relationship between
the t-statistics and tree sizes exist for the ensemble methods over a single pruned tree. First
of all, bagging, double-bagging, and random forest methods are outperformed by the single
pruned tree in smaller tree size. However, the boosting method consistently outperforms the
single pruned tree at every tree size.

Tree vs. Boosting Tree vs. Bagging Tree vs. Double-Bagging Tree vs. Random Forest

T value
Tvalue
Twvalua
T value

Tree Size Trea Size Trea Size Tree Size

Figure 6.1 Pared t-statistics for comparing a single pruned tree vs. other methods. Large positive values
mean significantly better accuracy for other methods over a single pruned tree.

As tree size increases, bagging, double-bagging and random forest methods gradually
outperformed the single pruned tree. In addition, the double-bagging method produces more
accurate results than bagging method for each tree size option. Conclusively, the random
forest method produces slightly more accurate results than the double-bagging and bagging
method.
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7. Concluding remarks

This study assessed significant influences on accuracy of several ensemble methods by
tree size. We defined the tree size as the depth of a decision tree and assumed that it
affects the accuracy of classification ensemble. From the experiments comparing popular
ensemble methods (boosting, bagging, double-bagging and random forest), we found that
the tree sizes effects are different on two types of ensemble methods. First, in boosting type
ensemble method, tree size effect is not uniform. Depending on the dataset, the optimal
tree size can be small. On the other hand, bootstrap based ensemble methods (bagging,
double-bagging and random forest) show more uniform results than boosting. In general,
large number of tree size shows better classification accuracies in most data sets. Therefore,
we conclude to use large tree size in the construction of classification ensembles that uses
bootstrap technique such as bagging, double-bagging and random forest.

To be more specific about the tree size determination, we suggest to use Table 3.1 for
boosting type ensemble methods since the optimal tree size depends on the features of
dataset. For bootstrap based ensemble methods, it would be unclear about how large is
considered to be large. We suggest to use an unpruned tree because it generally gives large
tree sizes for the data being analyzed. Therefore, it is not necessary to specify the tree size
before the ensemble construction in this case.

As limitations of the study, when we experimented the double-bagging setting, only one-
dimensional canonical LDA was considered to get an additional variable. However, it is
possible to apply higher dimensional canonical LDA to produce additional predictors. Addi-
tionally, other classification method can be applied with the out-of-bag sample. For example,
as a future study, we can utilize the random forest method combined with the OOB samples.
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