• 제목/요약/키워드: forest machine

검색결과 775건 처리시간 0.028초

수지(樹脂)의 전기삼투(電氣滲透)에 의(依)한 목재강도(木材强度) 증대(增大)에 관(關)한 연구(硏究) (Studies on Increase of Timber Strength with Electric Osmosis of Resin)

  • 박영관;김갑덕
    • 한국산림과학회지
    • /
    • 제12권1호
    • /
    • pp.23-29
    • /
    • 1971
  • 목재(木材)에 합성수지(合成樹脂)를 주입(注入)시키는데 전기삼투법(電氣渗透法)을 적용(週用)하여 실지(實地)로 주입(注入) 가능(可能)한 가를 실험(實驗)하고 주입후(注入後) 공시재(供試材)의 휨강도(强度)의 변화(變化)를 고찰(考察)한 것이다. 1. 공시수종(供試樹種)은 리기다소나무, 일본목련, 이태리포푸라이다. 2. 공시편(供試片)의 크기는 $30mm{\times}30mm{\times}330mm$ 이다. 3. 직류전압(直流電壓) 250V, 사용전류(使用電流) $1cm^2$당(當) 0.01A로 2시간(時間) 처리(處理)한 후(後) $120^{\circ}{\pm}2^{\circ}C$의 Oven에 넣어 24시간(時間) 경화처리(硬化處理) 하였다. 4. 휨 강도(强度) 측정(測定)의 시편(試片)은 $20mm({\times}20mm{\times}320mm$로 하고, Amsler식(式) 목재만능시험기(木材萬能試驗機)를 사용(使用)하였다. 5. 처리재(處理材)와 비교재간(比較材間)의 강도(强度)의 유의차(有意差)는 다음과 같다. a. 리기다소나무에 있어서는 고도(高度)의 유의차(有意差)가 있었다. b. 일본목련에 있어서는 유의차(有意差)가 나타나지 않았다. c. 이태리포푸라에 있어서는 5%수준(水準)에서 유의차(有意差)가 있었다.

  • PDF

속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구 (Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words))

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.163-170
    • /
    • 2019
  • 과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.

앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석 (Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model)

  • 류민지;손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1191-1205
    • /
    • 2022
  • 복잡하고 광범위한 원인을 가진 대기오염물질 중 particulate matter (PM)은 입자의 크기에 따라 분류된다. 그 중 PM2.5는 그 크기가 매우 작아 사람이 흡입하면 인간의 호흡기나 심혈관에 질병을 유발할 수 있다. 이러한 위험에 대비하기 위해서는 국가 중심의 관리와 사전에 예방할 수 있는 모니터링 및 예측이 중요하다. 본 연구는 고농도 미세먼지의 발생이 잦은 서울시의 PM2.5를 local data assimilation and prediction system (LDAPS) 기상 관련 인자 15가지와 aerosol optical depth (AOD), 화학인자 4가지를 독립변수로 하여 앙상블 모델 두 가지 random forest (RF)와 extreme gradient boosting (XGB)로 예측하고자 하였다. 예측에 사용된 두 모델의 성능 평가와 인자 중요도 평가를 수행하였으며, 계절별 모델 분석도 수행하였다. 예측 정확도 결과, RF가 R2 = 0.85, XGB가 R2 = 0.91의 높은 예측 정확도를 보이며 XGB가 RF보다 PM2.5 예측에 적합한 모델임을 확인하였다. 계절별 모델 분석 결과, 봄에 농도가 높은 관측 값과 비교하여 예측 수행이 잘 되었다고 할 수 있다. 본 연구는 다양한 인자를 이용하여 서울시의 PM2.5를 예측하였고, 좋은 성능을 보이는 앙상블 기반의 PM2.5 예측 모델을 구축하였다.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간 (Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN)

  • 신용탁;김동훈;김현재;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.109-118
    • /
    • 2022
  • 정점 표층 수온 관측 데이터 중 결측 구간의 데이터를 양방향 순환신경망(Bidirectional Recurrent Neural Network, BiRNN) 기법을 이용하여 보간하였다. 인공지능 기법 중 시계열 데이터에 일반적으로 활용되는 Recurrent Neural Networks(RNNs)은 결측 추정 위치까지의 시간 흐름 방향 또는 역방향으로만 추정하기 때문에 장기 결측 구간에는 추정 성능이 떨어진다. 반면, 본 연구에서는 결측 구간 전후의 양방향으로 추정을 하여 장기 결측 데이터에 대해서도 추정 성능을 높일 수 있다. 또한 관측점 주위의 가용한 모든 데이터(수온, 기온, 바람장, 기압, 습도)를 사용함으로써, 이들 상관관계로부터 보간 데이터를 함께 추정하도록 하여 보간 성능을 더욱 높이고자 하였다. 성능 검증을 위하여 통계 기반 모델인 Multivariate Imputation by Chained Equations(MICE)와 기계학습 기반의 Random Forest 모델, 그리고 Long Short-Term Memory(LSTM)을 이용한 RNN 모델과 비교하였다. 7일간의 장기 결측에 대한 보간에 대해서 BiRNN/통계 모델들의 평균 정확도가 각각 70.8%/61.2%이며 평균 오차가 각각 0.28도/0.44도로 BiRNN 모델이 다른 모델보다 좋은 성능을 보인다. 결측 패턴을 나타내는 temporal decay factor를 적용함으로써 BiRNN 기법이 결측 구간이 길어질수록 보간 성능이 기존 방법보다 우수한 것으로 판단된다.

스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상 (Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation)

  • 김예진;강은진;조동진;이시우;임정호
    • 한국지리정보학회지
    • /
    • 제25권3호
    • /
    • pp.74-99
    • /
    • 2022
  • 지상 오존은 차량 및 산업 현장에서 배출된 질소화합물(Nitrogen oxides; NOx)과 휘발성 유기화합물(Volatile Organic Compounds; VOCs)의 광화학 반응을 통해 생성되어 식생 및 인체에 악영향을 끼친다. 국내에서는 실시간 오존 모니터링을 수행하고 있지만 관측소 기반으로, 미관측 지역의 공간 분포 분석에 어려움이 있다. 본 연구에서는 스태킹 앙상블 기법을 활용하여 매시간 남한 지역의 지상 오존 농도를 1.5km의 공간해상도로 공간내삽하였고, 5-fold 교차검증을 수행하였다. 스태킹 앙상블의 베이스 모델로는 코크리깅(Cokriging), 다중 선형 회귀(Multi-Linear Regression; MLR), 랜덤 포레스트(Random Forest; RF), 서포트 벡터 회귀(Support Vector Regression; SVR)를 사용하였다. 각 모델의 정확도 비교 평가 결과, 스태킹 앙상블 모델이 연구 기간 내 시간별 평균 R 및 RMSE이 0.76, 0.0065ppm으로 가장 높은 성능을 보여주었다. 스태킹 앙상블 모델의 지상 오존 농도 지도는 복잡한 지형 및 도시화 변수의 특징이 잘 드러나며 더 넓은 농도 범위를 보여주었다. 개발된 모델은 매시간 공간적으로 연속적인 공간 지도를 산출할 수 있을 뿐만 아니라 8시간 평균치 산출 및 시계열 분석에 있어서도 활용 가능성이 클 것으로 기대된다.

머신러닝 기법을 이용한 약물 분류 방법 연구 (A Study on the Drug Classification Using Machine Learning Techniques)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.8-16
    • /
    • 2024
  • 본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.

머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구 (Mapping Mammalian Species Richness Using a Machine Learning Algorithm)

  • 김지영;이동근;김은섭;최지영;전윤호
    • 환경영향평가
    • /
    • 제33권2호
    • /
    • pp.53-63
    • /
    • 2024
  • 생물다양성은 환경영향평가 제도의 목표에 중요한 부문으로, 개발대상지 입지 선정, 주변 환경 파악 및 교란으로 인한 생물종 영향 등에서 활용되고 있다. 환경영향평가 분야에서 새로운 기술과 모델을 활용하여 생물다양성을 보다 정확하게 평가하고 예측하는 방안에 대한 연구가 많이 진행되고 있다. 비록 현장, 문헌조사를 통한 데이터를 바탕으로 종 풍부도 지수를 평가하고 있으나, 현장 데이터는 시·공간적으로 미흡하므로 고해상도의 종 풍부도 매핑을 통한 기초자료를 활용함으로서, 모니터링 실효성 문제 해결이 필요하다. 따라서 본 연구에서는 제4차 전국자연환경조사 데이터와 환경변수를 바탕으로 Random forest 모델을 활용하여 종 분포모형을 개발하였다. 해당 모델은 24종의 포유류 종 분포 매핑 결과를 species richness index를 활용하여 100m 해상도의 종 풍부도 매핑 결과를 도출하였다. 연구 결과, 종 분포모형은 평균 0.82의 AUC값으로 우수한 예측 정확도를 보였다. 또한, 전국자연환경조사 데이터와 비교결과, 고 해상도의 종 풍부도 매핑 결과의 종 풍부도 분포는 정규분포의 형태를 가지고 있어 환경영향평가에서의 기초자료로 사용함에 있어 신뢰성이 높다. 본 연구의 분석결과는 추후 도시개발과 사업을 함에 있어 생물다양성 평가, 서식지 보전 등에 새로운 참고자료로 활용될 수 있을 것으로 사료된다.

농업서리 자동관측 시스템(AAFOS)의 구현 (Implementation of an Automated Agricultural Frost Observation System (AAFOS))

  • 김규랑;조은수;고명수;강정혁;황윤재;이용희
    • 한국농림기상학회지
    • /
    • 제26권1호
    • /
    • pp.63-74
    • /
    • 2024
  • 농업에서 서리는 치명적인 피해를 가져오기 때문에 관측과 예측이 매우 중요하다. 기상청 서리관측자료를 분석한 최근 보고에 따르면 기후변화에 따른 지구온난화에도 불구하고 봄철 늦서리일이 빨라지지 않았고, 서리 빈도도 감소하지 않았다. 따라서 농업 서리피해에 대비하여 위험 예상 지역에서의 서리 관측 자동화와 지속적인 운영이 중요하다. 기존에 활용되고 있는 엽면습윤센서를 이용한 서리관측은 관측센서의 오염이나 주변 환경의 습도 변화에 따라 기준 전압값이 장기간에 걸쳐 변동하는 문제가 있었다. 본 연구에서는 이러한 문제를 자동적으로 해결하도록 데이터로거 프로그램으로 구현하였다. 구축된 서리자동관측시스템은 안정적으로 장기간에 걸쳐 시간 고해상도 관측자료를 축적할 수 있다. 이 자료는 향후 기계학습 방법을 이용한 서리 진단모델의 개발과 주변 지역에 대한 서리발생 예측 정보 생산에 활용할 수 있을 것이다.

돌발홍수 예보를 위한 빅데이터 분석방법 (The big data method for flash flood warning)

  • 박다인;윤상후
    • 디지털융복합연구
    • /
    • 제15권11호
    • /
    • pp.245-250
    • /
    • 2017
  • 돌발홍수는 강우유출수가 하천으로 모여드는 유역이 좁은 지역에 집중호우로 인해 유입되는 물의 양이 급증하여 나타난다. 돌발홍수는 유속이 빠르고 홍수를 대비할 수 있는 시간이 부족하므로 인명과 재산상의 피해를 발생시킨다. 본 연구에서는 돌발홍수를 예보를 위한 빅데이터 분석방법을 수행하였다. 연구 자료는 2009년에서 2012년까지 국민안전처 국가재난정보센터에 보고된 38건의 홍수 피해 자료와 지표수문모형(TOPLATS)에 의해 생성된 수문기상정보인 강우량, 토양수분 상태, 지표유출량이다. 돌발홍수 발생 선행 6시간의 강우량, 토양수분 상태, 지표유출량 데이터를 요인분석을 통해 토양수분 상태, 장기요인에 의한 강우량과 지표유출량, 단기요인에 의한 강우량과 지표유출량으로 축소하였다. 빅데이터 분석 방법으로는 유형분석인 의사결정나무, 랜덤포레스트, 나이브베이즈, 서포트벡터머신, 로지스틱 회귀모형을 사용하였다. 돌발홍수 사고발생 자료가 38건으로 한정되어 있기 때문에 예측성능 정확도 판단이 중요하다. 예측성능 정확도 평가방법으로 kappa계수, TP Rate, FP Rate, F-Measure를 이용하였다. 이 외에 돌발홍수 발생 선행 시점별 재현성 평가와 과거 4년간 돌발홍수 경보 횟수를 통해 최적 유형분석 방법을 제시하였다. 연구결과 로지스틱회귀모형과 랜덤포레스트가 돌발홍수 예보를 위한 예측 성능이 가장 좋았다. 사고발생 자료가 2009년부터 2012년까지 38건으로 한정되어 있어 분석을 위한 훈련자료와 검증자료 구축에 한계가 있었다. 장기간의 자료가 수집된다면 더욱 정확한 빅데이터 분석을 수행할 수 있다.