KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.494-510
/
2024
Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.
The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.
소비자 구전은 정보통신기술의 발전과 모바일 기기의 보급 가속화로 그 영향력 또한 급속도로 커지고 있다. 그러나 과도한 마케팅 경쟁은 가짜리뷰와 같은 거짓 온라인 구전을 확산시켰고, 이로 인해 소비자들은 온라인 구전에 대한 피로감과 함께 온라인을 통해 얻게 되는 정보를 불신하는 결과를 초래하고 있으며, 이는 소비자의 합리적 구매 결정 행위에 부정적인 영향을 미치기도 한다. 이에 대한 문제 인식의 확산으로 가짜리뷰의 형태적 특성에 대한 연구를 비롯해 가짜리뷰를 효과적으로 분류하기 위한 다양한 탐지 방법에 대한 연구가 증가하고 있다. 이에 본 연구에서는 네이버 블로그에 작성된 포스트를 대상으로 데이터를 수집하고, 사용자의 무의식에 기반한 습관적 패턴을 머신러닝 모형을 통해 분석해 보았다. 게시물이 작성된 블로그와 그 게시물에서 추출한 변수를 분석하여 향후 가짜리뷰 예측에 활용하고자 하였다. 연구 결과, 광고성 리뷰 예측에 있어 해당 글 작성자의 블로그에 등록된 전체 포스트의 개수와 포스트의 등록 날짜는 매우 높은 상관관계를 보였으며, 해당 포스트가 속한 분류에 등록된 포스트의 개수, 포스트 본문에 사용된 이미지의 개수, 블로그에 포함된 메뉴 개수, 포스트 제목 및 본문의 길이, 포스트가 획득한 '좋아요'의 개수 또한 높은 상관관계를 보였다. 또한 광고성 리뷰 여부를 판단하기 위한 머신러닝 모형에 있어서 랜덤포레스트를 활용한 모형이 가장 우수한 모형으로 확인되었다. 본 연구에서는 블로그에 작성된 리뷰 내용에 대한 형태소 분석을 시행하는 대신 리뷰를 작성한 사람의 행위를 분석하기 위한 시도를 하였다. 이를 위해 블로그와 포스트의 특성 데이터를 수작업이 아닌 웹 크롤링 기법으로 수집하고 머신러닝 모형을 통해 광고성 리뷰 여부를 판별할 가능성을 확인한 점은 향후 가짜리뷰의 빠른 탐지를 위한 효율성 및 효과성 향상에 기여할 수 있을 것이다.
원격탐사는 관찰하고자 하는 지역을 직접 방문하지 않고, 영상만으로도 적은 비용으로 짧은 시간 안에 대상지역을 연구하는데 있어 효율적인 기술이다. 본 연구에서는 가장 최근에 발사된 Landsat-8 OLI(Operational Land Imager) 영상을 이용하여 하천유역의 토지피복분류 정확도를 개선하는 방법을 제안하였다. 제안된 방법 중 첫 번째로 Landsat-8 OLI 영상을 이용하여 정규식생지수인 NDVI(Normalized Difference Vegetation Index)와 정규수분지수 NDWI(Normalized Difference Water Index)를 생성하였다. 두 번째로 원래의 영상에 생성된 NDVI와 NDWI 2개의 밴드를 Layer-Stacking하여 새로운 영상을 만들었다. 마지막으로 기존의 영상과 밴드조합을 적용한 새로운 영상에 각각 MLC(Maximum Likelihood Classification), SVM(Support Vector Machine)의 감독분류를 적용하였다. 하천피복분류를 할 때 정확도를 개선하는데 있어 그 의미가 있으며, 분류결과 MLC 분류방법을 적용하였을 때 약 8% 이상, SVM 분류방법을 적용하였을 때 약 1.6% 정도 개선되었다. 향후 다양한 영상과 밴드조합을 통한 연구가 이루어진다면 보다 나은 의사결정에 도움이 될 것으로 사료된다.
정기예금 가입 여부 예측은 은행의 대표적인 금융 마케팅 중 하나로, 은행은 다양한 고객 정보를 활용하여 예측 모델을 구성할 수 있다. 정기예금 가입 여부의 분류 정확도를 향상하기 위해, 많은 연구에서 기계학습 기법들을 이용하여 분류 모델들을 개발하였다. 하지만, 이러한 모델들이 만족스러운 성능을 보일지라도 모델의 의사결정 과정에 대한 근거가 적절하게 설명되지 않는다면 산업에서 활용하기가 쉽지 않다. 이러한 문제점을 해결하기 위해, 본 논문은 설명 가능한 정기예금 가입 여부 예측 기법을 제안한다. 먼저, 테이블 형식에서 우수한 성능을 도출하는 의사결정 나무 기반 앙상블 학습 기법인 랜덤 포레스트, GBM, XGBoost, LightGBM을 이용하여 분류 모델들을 개발하고, 10겹 교차검증을 통해 모델들의 분류 성능을 심층 분석한다. 다음으로, 가장 우수한 성능을 도출하는 모델에 설명 가능한 인공지능 기법인 SHAP을 적용하여 고객 정보의 영향도와 의사결정 과정 등을 해석할 수 있는 근거를 제공한다. 제안한 기법의 실용성과 타당성을 입증하기 위해, Kaggle에서 제공한 은행 마케팅 데이터 셋을 대상으로 모의실험을 진행하였으며, 데이터 셋 구성에 따라 GBM과 LightGBM 모델에 SHAP을 각기 적용하여 설명 가능한 정기예금 가입 여부를 위한 분석 및 시각화를 수행하였다.
컴퓨팅 환경의 발전에 따라 IT 기술이 의료, 산업, 통신, 문화 등의 분야에서 사람들에게 제공해주는 혜택이 늘어나 삶의 질도 향상되고 있다. 그에 따라 발전된 네트워크 환경을 노리는 다양한 악의적인 공격이 존재한다. 이러한 공격들을 사전에 탐지하기 위해 방화벽, 침입 탐지 시스템 등이 존재하지만, 나날이 진화하는 악성 공격들을 탐지하는 데에는 한계가 있다. 이를 해결하기 위해 기계 학습을 이용한 침입 탐지 연구가 활발히 진행되고 있지만, 학습 데이터셋의 불균형으로 인한 오탐 및 미탐이 발생하고 있다. 본 논문에서는 네트워크 침입 탐지에 사용되는 UNSW-NB15 데이터셋의 불균형성 문제를 해결하기 위해 랜덤 오버샘플링 방법을 사용했다. 실험을 통해 모델들의 accuracy, precision, recall, F1-score, 학습 및 예측 시간, 하드웨어 자원 소모량을 비교 분석했다. 나아가 본 연구를 기반으로 랜덤 오버샘플링 방법 이외에 불균형한 데이터 문제를 해결할 수 있는 다른 방법들과 성능이 높은 모델들을 이용하여 좀 더 효율적인 네트워크 침입 탐지 모델 연구로 발전시키고자 한다.
2020년 하반기부터 2021년 초까지 발생한 조류인플루엔자의 여파로 1,780만수의 산란계가 살처분되면서 계란 공급 부족으로 계란 1판에 1만원을 넘는 사태가 벌어지기도 했다. 이에 정부는 물가 안정 대책으로 1,000억원 이상의 국고를 계란 수입에 투입하였지만, 계란 가격의 안정화는 쉽지 않았다. 계란 가격의 급격한 변동성은 소비자와 양계농가 모두에게 부정적인 영향을 미치므로 계란 가격의 안정화 방안을 위한 대책이 필요하다. 이를 위해 본 연구에서는 머신러닝 회귀분석 알고리즘을 활용하여 계란 가격을 예측하였으며, 가격 예측을 위해서 대한양계협회 2012~2021년도의 월간 산란계 생산통계와 국가통계포털(KOSIS)의 도축실적 등 총 8개의 독립변수를 선택하였다. 실제 가격과 모델에 의한 예측 가격의 차이를 나타내는 평균 제곱근 오차(RMSE)는 약 103원이며, 이는 개발된 모델이 계란 가격을 비교적 잘 예측한 결과라고 판단된다. 정확한 계란 가격 예측은 산란계 계란 생산주령의 유연한 조정과 산란계 입식에 대한 의사결정을 도울 수 있고, 계란 가격 안정성 확보에 도움을 줄 것으로 보인다.
본 연구는 웨어러블 기기에서 수집된 라이프로그 데이터를 활용하여 고령화 사회에서 증가하고 있는 치매를 조기에 진단하여 관리할 수 있는 예측 모델을 개발하고, 이를 기반으로 한 상업적 활용전략을 제안하는 것을 목표로 하였다. 이 연구는 전문의의 병리진단을 기반으로 한 60~80대 174명의 대상자로부터 수집된 12,184개의 라이프로그 정보(수면 및 활동 정보)와 치매 진단 데이터를 활용하였다. 연구 과정에서 수면과 활동 데이터를 포함하는 다차원적인 데이터셋을 표준화 하였고 다양한 머신러닝 알고리즘으로 분석하였으며, 가장 높은 ROC-AUC점수를 보여준 랜덤 포레스트 모델이 가장 우수한 성능을 보였다. 또한 ablation test를 통해 수면과 관련된 변수들과 활동과 관련 변수들의 제외가 모델 예측력에 미치는 영향을 평가하였고, 이러한 변수들이 모델의 예측력에 유의미한 영향력을 가지고 있음을 확인하였다. 마지막으로, 개발된 모델의 상업적 활용 전략의 가능성을 탐구함으로써, 치매예방 시스템의 상업적 확산을 위한 새로운 방향을 제안하였다.
급격한 도시화와 이상기후의 증가로 도시의 기온이 꾸준히 올라가고 있으며, 한 도시 안에서도 열분포 양상이 지역마다 다르게 나타나고 있어 상세한 도시 열환경 분석이 요구된다. 최근에는 위성자료를 이용한 열환경 분석이 수행되고 있으나, 위성자료는 시 공간해상도의 Trade-off 관계로 인해 정밀한 분석에 어려움이 따른다. 이 연구는 2012년부터 2016년의 대구광역시 여름철 열환경 분석을 위해, MODIS(Moderate Resolution Imaging Spectroradiometer) 1 km 공간해상도의 낮과 밤 지표면온도(낮$LST_{1km}$, 밤$LST_{1km}$)를 250 m 공간해상도(낮$LST_{250m}$, 밤$LST_{250m}$)로 상세화 시켰다. 상세화에는 기계학습 기법인 랜덤 포레스트(Random Forest)가 이용되었다. 향상된 $LST_{250m}$는 기존의 $LST_{1km}$에 비해, 대구광역시 행정동 기준 불투수면적 비율과 지표면온도가 높은 상관관계를 보여주었다. 다음으로, 상세화 된 낮과 밤$LST_{250m}$를 이용하여 Hot Spot 분석을 수행하였다. 대구광역시 행정동 중 낮과 밤 지표면온도가 Hot Spot으로 군집화된 영역을 비교하고, 토지피복도를 이용하여 그 원인을 분석했다. 낮에는 공업 및 상업지역의 비율이 높은 영역에서, 밤의 경우 주거지역의 비율이 높은 영역에서 높은 Hot Spot이 군집 되었다. 본 연구의 열환경 분석 접근은 향후 도시정책 수립 및 국민안전에 큰 기여를 할 수 있을 것으로 기대된다.
대기 중 이산화질소(NO2)는 주로 인위적인 배출요인으로 발생하며 화학 반응을 통해 이차오염 물질 및 오존 형성에 매개 역할을 하는 인체 건강에 악영향을 미치는 물질이다. 우리나라는 지상 관측소에 의한 실시간 NO2 모니터링을 수행하고 있지만, 이는 점 기반의 관측 값으로써 미관측 지역의 공간 분포 분석이 어렵다는 한계점을 지닌다. 본 연구에서는 선형 회귀 기반 모델인 다중 선형 회귀와 회귀 크리깅, 기계학습 알고리즘인 Random Forest (RF), Support Vector Regression (SVR)을 적용한 공간 내삽 모델링을 통해 서울 지역의 지상 NO2 농도 지도를 제작하였고, 일별 Leave-One-Out Cross Validation (LOOCV) 교차 검증을 시행하였다. 2020년 연구기간 내 일별 LOOCV에서 MLR, RK, SVR 모델의 일별 평균 Index of agreement (IOA)는 약 0.57로 유사한 성능을 보였으며, RF (0.50)보다 높은 성능이 확인되었다. RK의 일별 평균 nRMSE는 0.9483%으로 MLR (0.9501%)보다 상대적으로 낮은 오차를 나타냈다. MLR과 RK, RF 모델의 계절별 공간 분포는 비슷한 양상을 보였으며, RF는 다른 모델에 비해 좁은 NO2 농도 범위가 확인되었다. 본 연구에서 제안된 선형 회귀 기반 공간 내삽은 지상 NO2 뿐 아니라 다른 대기 오염 물질의 도시 지역 공간 내삽을 위해 활용 가능성이 높을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.