• Title/Summary/Keyword: forest land use

Search Result 683, Processing Time 0.029 seconds

An Analysis on the Structural Changes of Rural Land Use According to Urbanization (도시화에 따른 농촌토지이용구조변화 분석)

  • Hwang, Han-Cheol;Go, Young-Bae
    • Journal of Korean Society of Rural Planning
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • This study aims to show how the urbanization of Korea has progressed for the last three decades, what its characteristics are, and how rural land use has changed by the national and district(cities and counties) level. The land use changes accompanying to the urbanization is analyzed through 3 indicators such as urbanization rate, the rate of cultivated and forest land and the rate of urbanized area. The statistical data are 30 years from 1976 to 2005 for time series analysis by the national level, and are for the two years of 1995 and 2005 by the district level. The relationship between urbanization and land use changes in the national level is analyzed using statistical analysis(Correlation Analysis). In order to analyze the dynamic and spatial urbanization and land use changes effectively in the district level, Z-score, Paired T-test, Correlation Analysis, Analysis of Variance and Chi-squire Test are used. The results show negative correlation between urbanization rate and the rate of cultivated and forest land, and positive correlation between urbanization rate and the rate of urbanized area respectively. In the aspect of the change of urbanization rate, four categories are examined. In addition, four types are characterized on the basis of the rate of cultivated and forest land and the rate of urbanized area between 1995 from 2005.

Spatial Distribution and Casual Causes of Shallow Landslides in Jinbu Area of Korea

  • Park, Jin Woo;Choi, Byoung Koo;Kim, Myung Hwan;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In temperate monsoon regions, extensive shallow landslides triggered by heavy rainfall are recurrent phenomena in mountainous areas. 1,357 landslides over Jinbu area, Korea that totaled 127 km2 were identified from aerial photographs and field survey. We examined characteristics of rainfall-induced shallow landslides and casual factors affecting landslide distribution with respect to topographic and forest settings, and land use. Most landslides occurred in the study area were the results of a complex combination of precondition, preparatory factors and triggering factors. Cumulative rainfall and high intensity rainfall during short period of time made the study area very sensitive to landslides and played as catalysts to enable other factors including topographic and forest settings, and land use to act more effectively. In addition, some landslides at lower elevation involved channel incision or bank erosion influenced by land use changes such as deforestation and intensification of agriculture surrounding riparian forests or hillslopes. The results suggest that most of landslide were triggered by heavy rainstorms while topographic, forest settings, and land use affected landslide distribution occurred in the study area.

Analysis of Changes in Land Use and Pollution Load for the Unit Watersheds of Total Maximum Daily Loads (총량관리 단위유역의 토지이용 변화 및 오염물질 배출형태 분석)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2014
  • The land use of the unit watersheds should be maintained appropriately in order to keep the load allotment stable for the management of Total Maximum Daily Loads (TMDLs). This study classified the land area in four types and analyzed the use of each land type and its changing pattern by calculating the occupation and conversion ratios for the unit watersheds in three river basins. The forest land showed the greatest occupation ratio with 63.0%, followed by the farm land with 23%, the other area with 8.0% and the site area with 6.0% in 2003. The occupation ratio of the site and the other area increased by 0.4% and 0.2% respectively, and that of the farm and the forest land decreased by 0.4% and 0.2% respectively in 2007. The conversion ratio for the site area ranged from 1.65% to 1.97%, for the farm land from -0.47% to -0.33%, for the forest land from -0.10% to -0.04% and for the other area from 0.17% to 1.97%. It can be inferred that the decrease in the farm and the forest land contributed to the increase in the site area and that the increase in the other area was mainly made by the decrease in the forest land. It could be more effective to take into account the changes in the site area and in the forest land in the process of developing the TMDL plans.

Consequences of land use change on bird distribution at Sakaerat Environmental Research Station

  • Trisurat, Yongyut;Duengkae, Prateep
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.203-214
    • /
    • 2011
  • The objectives of this research were to predict land-use/land-cover change at the Sakaerat Environmental Research Station (SERS) and to analyze its consequences on the distribution for Black-crested Bulbul (Pycnonotus melanicterus), which is a popular species for bird-watching activity. The Dyna-CLUE model was used to determine land-use allocation between 2008 and 2020 under two scenarios. Trend scenario was a continuation of recent land-use change (2002-2008), while the integrated land-use management scenario aimed to protect 45% of study area under intact forest, rehabilitated forest and reforestation for renewable energy. The maximum entropy model (Maxent), Geographic Information System (GIS) and FRAGSTATS package were used to predict bird occurrence and assess landscape fragmentation indices, respectively. The results revealed that parts of secondary growth, agriculture areas and dry dipterocarp forest close to road networks would be converted to other land use classes, especially eucalyptus plantation. Distance to dry evergreen forest, distance to secondary growth and distance to road were important factors for Black-crested Bulbul distribution because this species prefers to inhabit ecotones between dense forest and open woodland. The predicted for occurrence of Black-crested Bulbul in 2008 covers an area of 3,802 ha and relatively reduces to 3,342 ha in 2020 for trend scenario and to 3,627 ha for integrated-land use management scenario. However, intact habitats would be severely fragmented, which can be noticed by total habitat area, largest patch index and total core area indices, especially under the trend scenario. These consequences are likely to diminish the recreation and education values of the SERS to the public.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

Land Use/Land Cover (LULC) Change in Suburb of Central Himalayas: A Study from Chandragiri, Kathmandu

  • Joshi, Suraj;Rai, Nitant;Sharma, Rijan;Baral, Nishan
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2021
  • Rapid urbanization and population growth have caused substantial land use land cover (LULC) change in the Kathmandu valley. The lack of temporal and geographical data regarding LULC in the middle mountain region like Kathmandu has been challenging to assess the changes that have occurred. The purpose of this study is to investigate the changes in LULC in Chandragiri Municipality between 1996 and 2017 using geographical information system (GIS) and remote sensing. Using Landsat imageries of 1996 and 2017, this study analyzed the LULC change over 21 years. The images were classified using the Maximum Likelihood classification method and post classified using the change detection technique in GIS. The result shows that severe land cover changes have occurred in the Forest (11.63%), Built-up areas (3.68%), Agriculture (-11.26%), Shrubland (-0.15%), and Bareland (-3.91%) in the region from 1996 to 2017. This paper highlights the use of GIS and remote sensing in understanding the changes in LULC in the south-west part of Kathmandu valley.

Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang

  • Temgoua, Lucie Felicite;Solefack, Marie Caroline Momo;Voufo, Vianny Nguimdo;Belibi, Chretien Tagne;Tanougong, Armand
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2018
  • This study was carried out in the teaching and research forest of the University of Dschang in Belabo, with the aim of analysing land-cover and land-use changes as well as carbon stocks dynamic. The databases used are composed of three Landsat satellite images (5TM of 1984, 7ETM + of 2000 and 8OLI of 2016), enhanced by field missions. Satellite images were processed using ENVI and ArcGIS software. Interview, focus group discussion methods and participatory mapping were used to identify the activities carried out by the local population. An inventory design consisting of four transects was used to measure dendrometric parameters and to identify land-use types. An estimation of carbon stocks in aboveground and underground woody biomass was made using allometric models based on non-destructive method. Dynamic of land-cover showed that the average annual rate of deforestation is 0.48%. The main activities at the base of this change are agriculture, house built-up and logging. Seven types of land-use were identified; adult secondary forests (64.10%), young secondary forests (7.54%), wetlands (7.39%), fallows (3.63%), savannahs (9.59%), cocoa farms (4.28%) and mixed crop farms (3.47%). Adult secondary forests had the highest amount of carbon ($250.75\;t\;C\;ha^{-1}$). This value has decreased by more than 60% for mixed crop farms ($94.67\;t\;C\;ha^{-1}$), showing the impact of agricultural activities on both forest cover and carbon stocks. Agroforestry systems that allow conservation and introduction of woody species should be encouraged as part of a participatory management strategy of this forest.

Ground beetle (Coleoptera: Carabidae) assemblage in the urban landscape, Korea

  • Jung, Jong-Kook;Kim, Seung-Tae;Lee, Sue-Yeon;Park, Chang-Kyu;Lee, Eun-Heui;Lee, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.79-89
    • /
    • 2012
  • This study was conducted with the intention of clarifying the effects of land-use types on a species of ground beetle's richness, abundance, and composition; the study focused on urban landscapes. We also selected the potential bioindicators classifying land-use types; eleven sites were selected from an urban landscape in Korea. Overall, land-use types in urban landscapes did not appear to cause significant decrease in species richness or the abundance of total ground beetle assemblage. According to habitat preferences, several land-use types and distances from the forest significantly affected the species richness and abundance, while the open-habitat species were not affected by these variables. Land-use types were classified into two major groups, forest and non-forest areas, based on ground beetle assemblage; several indicators, such as $Dolichus$ $halensis$ $halensis$ and subfamily Carabinae species, were of particular consideration. In conclusion, environmental change by anthropogenic disturbance can cause different effects on ground beetle assemblages, and forest specialists can be negatively affected.

Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type

  • Kim, Jinhyun;Jang, Inyoung;Lee, Hyunjin;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Changes in land-use type can affect soil and water properties in stream ecosystems. This study examined the effects of different land-use types on biogeochemical properties and microbial activities of a stream. We collected water and sediment samples in a stream at three different sites surrounded by varying land-use types; a forest, a radish field and a rice paddy. Nitrogen contents, such as nitrate, nitrite and total nitrogen in the stream water body, showed significant differences among the sampling sites. The highest nitrogen values were recorded at the site surrounded by cropland, as fertilizer runoff impacted the stream. Soil organic matter content in the sediment showed significant differences among sites, with the highest content exhibited at the forest mouth site. These differences might be due to the organic matter in surrounding terrestrial ecosystems. Microbial activities determined by extracellular enzyme activities showed similar values throughout all sites in the water body; however, the activities in the sediments exhibited the highest values near the forest site and mirrored the soil organic matter content values. From these results, we conclude that different land-use types are important factors affecting water and sediment properties in stream ecosystems.