• Title/Summary/Keyword: forest fuel

Search Result 202, Processing Time 0.027 seconds

Assessment of Canopy Fuel Characteristics for Five Major Coniferous Species in Korea (우리나라 주요 침엽수종의 수관층 연료특성 평가)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The objective of this study was to assess the canopy fuel characteristics of five major coniferous species in Korea. This study was also developed allometric equations for the canopy fuel load and canopy base height of the major coniferous species using the allomeric equations of biomass developed by the Korea Forest Research Institute and the data from the $5^{th}$ National Forest Inventory. Among the major coniferous fuel types, Pinus koraiensis stands had the highest mean canopy bulk density, 0.34 kg/$m^3$, followed by Gangwon region Pinus densiflora stands 0.28 kg/$m^3$, Pinus thunbergii stands 0.24 kg/$m^3$, Pinus rigida stands 0.15 kg/$m^3$, Central region Pinus densiflora stands 0.12 kg/$m^3$ and Larix leptolepis stands 0.09 kg/$m^3$. The adjusted multiple coefficient of determination of the developed models ranged from 0.6321 to 0.9950 for canopy fuel load and 0.6390 to 0.8539 for canopy base height.

Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea (숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Jang, Mina;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The objective of this study was to analyze the changes of crown fire hazard possibility from the effects of forest tending works (FTW) in Pinus densiflora stands in Korea. The study sites were located in Youngju (FTW) and Bonghwa (Control) areas. Ten representative sample trees were destructively felled at each areas to analyze the crown fuel characteristics. The results of this study showed that crown fuel moisture content in Youngju and Bonghwa areas were 103.6% and 104.4%, respectively. The needles and twigs with less than 1cm diameter accounted 50.3% of the total crown fuel load in Youngju area and 62.0% in Bonghwa area. On the other hand, it was observed in Youngju that the canopy bulk density was $0.11kg/m^3$ lower but have 1.3 m higher average canopy base height therefore having a possibility of lower crown fire hazard as compared to Bonghwa that had higher canopy bulk density and lower canopy base height.

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

The model development and verification for surface branch wood fuels moisture prediction after precipitation during spring period at the east coast region (영동지역 봄철 소나무림에서 강우후 지표연료 직경별 연료습도변화 예측모델 개발 및 검증)

  • Lee, Si-Young;Lee, Myung-Woog;Kwon, Chun-Geun;Yeom, Chan-Ho;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.434-437
    • /
    • 2008
  • In this study, we developed a fuel moisture variation prediction model on each day after precipitation during a spring forest fire exhibition period. For this research, we selected plots in pine forest on Sam-Chuck si and Dong-hae si in Kangwon do according to a forest density(low, mediate, high) and classified a surface woody fuel by a diameter.(below 0.6cm, $0.6{\sim}3cm$, $3{\sim}6cm$, and above 6cm). A validity of this model was verified by applying a fuel moisture variation after precipitation in this spring. In the result, $R^2$ was $0.76{\sim}0.92$. This model will be a useful for improvement of a forest fire danger rate forcast through a prediction a fule moisture in forest.

  • PDF

Analysis of forest fire danger rating on the forest characteristic of thinning area and non-thinning area (숲 가꾸기 실행 및 미실행지의 임분특성에 따른 산불위험도 분석)

  • Lee, Si-Young;Lee, Myung-Woog;Chae, Hee-Min;Won, Myoung-Soo;Yeom, Chan-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.217-222
    • /
    • 2007
  • Since 1973, we attain a successful achievement of nation-wide afforestation such as a thick forest and heaped-up leaves. However, the higher of the formation density in forest, the more dangerous to be a large-scale forest fire whenever fire occurs. According to the type of forest in the country, 42% of the forest is occupied by conifer forest that are highly flammable, and the distribution of forest age is in a transition period from immature forest to mature one. And the structure is too weak to the forest fire for the occurrence and spread because there are too many scrub and shrub trees in the forest. As a matter of course, it is on the increase of the thinning-forest that can shift the forest structure from a weak on forest fire to a strong one nowaday. In other words, thinning-forest has primary purposes such as the promotion of producing forest trees, production of excellent timbers, and build-up of public forest area. Furthermore, in some reports, the reduction of ladder fuel by eliminating the vertical/horizontal fuel in a forest and ensuring spaces in the forest can decrease the occurrence of forest fire and the risk of spread of burning as by-effect. Therefore, this study is designed to clarify the relation with the risk of forest fire by an on-spat-investigation of the characteristics of forest composition on the thinning and the non-thinning area.

  • PDF

Fuel Properties of Woody Pellets in Domestic Markets of Korea

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.362-369
    • /
    • 2014
  • This study investigated physical properties and combustion gas characteristics for 8 types of wood pellets (4 domestic and 4 imported products) distributed in the domestic market. Results showed that most pellet types were first-grade pellets in the wood pellet quality standards in Korea with the exception of 3 pellet types from K company (second-grade in mechanical durability), G company (off-grade in nitrogen content) and P company (second-grade in ash percentage). Mixed pellets which contained more lignin and sap content were higher in mechanical durability (%) than that of white pellets. From the combustion gas analysis results, NOx emitted from all pellets combustion was at acceptable levels for national emission standard of the Clean Air Conservation Act except for pellets from G company. In addition, CO levels from all types of wood pellets were acceptable except for pellets from D company and domestic pellets were higher CO levels than imported pellets. These results indicate the higher CO levels in domestic pellets due to the usage of forest thinning materials including logging debris which usually had the high content of bark.

The feasibility analysis for energy utilization of forest biomass (산림 바이오매스의 에너지 활용을 위한 타당성 분석)

  • Kang, Hyeun Koo;Park, Kee Chul;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.7-20
    • /
    • 2014
  • The optimal woodchip production system was developed and the production cost of a forest woodchip fuel was calculated for utilizing the pitch pine, which covers around 480,000ha nationwide. the marginal price of the woodchip fuel considering the factor of supply price, electricity and heat selling price as well as capacity factor were suggested and the economic sensitivity analysis was conducted for various scenario. The most important variable which determine economic feasibility was a fuel cost for the power generation facility. If the electricity price is higher than the current SMP(System Marginal Price) or the capacity factor is higher than 80%, there fully is a benefit to consume the woodchip fuels produced in the suggested production system in this study. In addition, the additional benefit becomes more obvious when considering REC(Renewable Energy Certificate) and CDM(Clean Development Mechanism). Therefore, it is strongly suggested for domestic power generation sector to utilize the forest biomass fuel to achieve the obligatory target of RPS.

Allometric Equations for Crown Fuel Biomass of Pinus koraiensis Stands in Korea (잣나무림의 수관연료량 추정을 위한 상대생장식 개발)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • The objective of this study was to develop allometric equations for the estimation of crown fuel biomass of Pinus koraiensis in Korea. A total of twenty four representative sample trees were destructively sampled in Gapyeong, Hongcheon, and Jeongseon. Crown fuels were weighed separately for each fuel category by size class and by living and dead. The results of this study showed that the needles contributed the largest biomass (16.6 kg, 34.7%), followed by live branches with size ranging from 2~4 cm (9.0 kg, 18.9%), 1~2 cm (6.6 kg, 13.8%), <0.5 cm (5.1 kg, 10.6%), 0.5~1 cm (4.9 kg, 10.3%), and dead branches (3.2 kg, 6.8%), while the live branches with 4 cm (2.4 kg, 4.9%) as the lowest. The adjusted coefficient of determination values were the highest ($R^2_{adj}=0.6021{\sim}9742$) and standard error of estimate were the lowest (S.E.E.=0.2018~0.7271) in allometric equation $lnWt={\beta}_0+{\beta}_1lnD$. The available fuels that are consumed during crown fires (i.e., needles and twigs with diameter less than 1 cm) comprised 55.6% of the total crown fuel biomass.