• Title/Summary/Keyword: forest fire occurrence cause

Search Result 8, Processing Time 0.029 seconds

The Analysis on Forest Fire Occurrence Characteristics by Regional Area in Korea from 1990 to 2014 Year

  • Jeon, Bo Ram;Chae, Hee Mun
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2016
  • Understanding regional characteristics in forest fire occurrence is important to establish effective forest fire prevention policy in Korea. This study analyzed the characteristics of forest fires occurred in 16 administrative districts for recent 25 years (1990~2014) to examine regional characteristics in forest fire occurrence. Forest fire occurrence reflects regional characteristics depending on climatic factors as well as region's society-cultural factors. Results showed that the first cause of forest fire occurrence was carelessness by human activities throughout all administrative districts, however, the second cause depends on regional characteristics. As the results of forest fire occurrence period analyzed for 10 days, the most forest fires occurred in the southern region during January to March, while forest fires in the northern region occurred mostly during March to April. We classified forest fire occurrence patterns into three types (centralized: Gyeonggi-do, dispersal: Busan, horizontally distributed: Gyeongsangnam-do) by multi-temporal analysis for forest fire occurrence period.

An Impact Analysis and Prediction of Disaster on Forest Fire

  • Kim, Youn Su;Lee, Yeong Ju;Chang, In Hong
    • Journal of Integrative Natural Science
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 2020
  • This study aims to create a model for predicting the number of extinguishment manpower to put out forest fires by taking into account the climate, the situation, and the extent of the damage at the time of the forest fires. Past research has been approached to determine the cause of the forest fire or to predict the occurrence of a forest fire. How to deal with forest fires is also a very important part of how to deal with them, so predicting the number of extinguishment manpower is important. Therefore predicting the number of extinguishment manpower that have been put into the forest fire is something that can be presented as a new perspective. This study presents a model for predicting the number of extinguishment manpower inputs considering the scale of the damage with forest fire on a scale bigger than 0.1 ha as data based on the forest fire annual report(Korea Forest Service; KFS) from 2015 to 2018 using the moderated multiple regression analysis. As a result, weather factors and extinguished time considering the damage show that affect forest fire extinguishment manpower.

Analysis of Forest Fire Occurrence in Korea (한국의 산불발생 실태분석)

  • Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.54-63
    • /
    • 2006
  • The number of forest fire under various conditions such as year, month, time, day of the week, region, damaged species, cause, and damaged area are checked, and the statistics of the forest fire causing materials in recent 14 years ('91-'04) are analyzed. The result shows that the year majority of forest fires had happened in last 14 year was 2001 and most of forest fire occurred in April, Sunday, around 14:00 to 15:00. The most damaged region is Gyeongsangbuk-Do, followed by Gangwon-Do, Jeollabuk-Do, and Gyeonggi-Do. The most damaged species is pine tree. The main causes of forest fires are accidental fire and incineration of a field boundary; however, recently, incendiarism is increased. The result of analysis on the damaged area shows that small fires under 5 ha occurred most frequently and large fires (over 30 ha) occurred mostly in Kangwon province (44.2%). The result also shows that the large forest fires (1,113 minutes) require 7.5 time more than the small forest fires (148 minutes). Especially, since average damaged area caused by large forest fire was about 470 ha per incident.

Cause-specific Spatial Point Pattern Analysis of Forest Fire in Korea (우리나라 산불 발생의 원인별 공간적 특성 분석)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myung-Soo;Koo, Kyo-Sang;Lee, Byung-Doo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Forest fire occurrence in Korea is highly related to human activities and its spatial distribution shows a strong spatial dependency with cluster pattern. In this study, we analyzed spatial distribution pattern of forest fire with point pattern analysis considering spatial dependency. Distributional pattern was derived from Ripley's K-function according to causes and distances. Spatially clustered intensity was found out using Kernel intensity estimation. As a result, forest fires in Korea show clustered pattern, although the degrees of clustering for each cause are different. Furthermore, spatial clustering pattern can be classified into two groups in terms of degrees of clustering and distance. The first group shows the national-wide cluster pattern related to the human activity near forests, such as human-induced accidental fire in mountain and field incineration. Another group shows localized cluster pattern which is clustered within a short distance. It is associated with the smoker fire, arson, accidental by children. The range of localized clustering was 30 km. Beyond of this range, the patterns of forest fire became random distribution gradually. Kernel intensity analysis showed that the latter group, which have localized cluster pattern, was occurred in near Seoul with high densed population.

The Effects of Drought on Forest and Forecast of Drought by Climate Change in Gangwon Region

  • Chae, Hee-Mun;Lee, Sang-Sin;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • A Gangwon region consisting of over 80% of forest area has industries that have been developed by utilizing its clean region image. However, the recent climate change has increased the forest disease & insect pest as well as the forest fire and the major cause is known to be the increase in the frequency of a drought occurrence. From the aspect of climate change, it can be said that drought and forest are important in every aspect of the adaptation and mitigation of climate change measure as they increase forest disease & insect pest that leads to desolation of usable forest resource. In addition, the increase of forest fire reduces resources that can absorb greenhouse gas, which leads to increase in green house emission. The purpose of this study is to provide a motive for concentrating administrative power for protecting forest in a Gangwon region by selecting a drought management needed local government through a drought forecast according to the climate change scenario of a Gangwon region.

Occurrence of Rhizina Root Rot in a Black Pine (Pinus thunbergii) Forest Located at the Western Coastal Area in Korea and Its Spreading Patterns (서해안 곰솔림에서의 리지나뿌리썩음병 발생 및 확산 유형)

  • Lee, Seung-Kyu;Kim, Kyung-Hee;Kim, Yeon-Tae;Park, Ju-Yong;Lee, Sang-Hyun
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.208-212
    • /
    • 2005
  • At the survey of June, 2002, total 294 dead frees were found in 20 ha of Black pine (Pinus thunbergii) forest located in the western coastal region of Korean peninsula. The dead trees were scattered over the 27 place as groups of about ten trees each. As a result of the field survey on the relationship between the conditions of dead trees and the occurrence of fruiting bodies of Rhizina undulata around the dead and/or dying trees, from June 2002 to August 2004 in the four plots, the occurrence of infected trees was observed as a shape of an irregular concentric circle from the first infected tree and R. undulata was found mainly around the dead tree. Because there was no observation of any other insects and pathogens which would kill trees, the cause of tree death in groups was considered owing to R. undulata. From the analysis of the physical and chemical proper ties of the soil collected from the damaged areas, the pH of soil was between 4.6 and 5.8 and the contents of soil nutrients were very low. Any "fire" trace was not found at all the 27 damaged places in the area, Taean, Chungcheongnam-Do, which are generally known as an important factor to initiate development of the disease. Therefore, further examination is needed to verify precisely about other environmental factors related with the group dying of the Black pines in this area beside 'fire'.

Developing Fire-Danger Rating Model (산림화재예측(山林火災豫測) Model의 개발(開發)을 위(爲)한 연구(硏究))

  • Han, Sang Yeol;Choi, Kwan
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.257-264
    • /
    • 1991
  • Korea has accomplished the afforestation of its forest land in the early 1980's. To meet the increasing demand for forest products and forest recreation, a development of scientific forest management system is needed as a whole. For this purpose the development of efficient forestfire management system is essential. In this context, the purpose of this study is to develop a theoretical foundation of forestfire danger rating system. In this study, it is hypothesized that the degree of forestfire risk is affected by Weather Factor and Man-Caused Risk Factor. (1) To accommodate the Weather Factor, a statistical model was estimated in which weather variables such as humidity, temperature, precipitation, wind velocity, duration of sunshine were included as independent variables and the probability of forestfire occurrence as dependent variable. (2) To account man-caused risk, historical data of forestfire occurrence was investigated. The contribution of man's activities make to risk was evaluated from three inputs. The first, potential risk class is a semipermanent number which ranks the man-caused fire potential of the individual protection unit relative to that of the other protection units. The second, the risk sources ratio, is that portion of the potential man-caused fire problem which can be charged to a specific cause. The third, daily activity level is that the fire control officer's estimate of how active each of these sources is, For each risk sources, evaluate its daily activity level ; the resulting number is the partial risk factor. Sum up the partial risk factors, one for each source, to get the unnormalized Man-Caused Risk. To make up the Man-Caused Risk, the partial risk factor and the unit's potential risk class were considered together. (3) At last, Fire occurrence index was formed fire danger rating estimation by the Weather Factors and the Man-Caused Risk Index were integrated to form the final Fire Occurrence Index.

  • PDF

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.