• Title/Summary/Keyword: forest eco-system

Search Result 63, Processing Time 0.027 seconds

Development and Application of a Cleaved Amplified Polymorphic Sequence Marker for Discriminating A Mating Type Alleles of Lentinula edodes (표고 A 교배형 구분을 위한 CAPS 마커의 개발 및 적용)

  • Park, Mi-Jeong;Ryoo, Rhim;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.389-396
    • /
    • 2020
  • Lentinula edodes is one of the most widely consumed edible mushrooms in Korea. Mating in L. edodes is regulated by a tetrapolar system, and two unlinked genetic loci, A and B, are known to be major determinants of the mating types, as reported in other heterothallic basidiomycetes. The A locus of L. edodes encodes a pair of homeodomain (HD) transcription factors. The highly variable N-termini of these HD transcription factors contribute to the diversity among the A mating types. In this study, we developed a cleaved amplified polymorphic sequence (CAPS) marker to discriminate 11 different A mating type alleles predominant among both cultivated and wild strains. Amplification of the variable region of the A locus followed by digestion with HaeIII and EcoRI restriction enzymes enabled successful discrimination among the 11 A mating type alleles. We also evaluated the applicability of this method in the identification of two A mating types of a dikaryotic strain.

Parameterization and Application of Regional Hydro-Ecologic Simulation System (RHESSys) for Integrating the Eco-hydrological Processes in the Gwangneung Headwater Catchment (광릉 원두부 유역 생태수문과정의 통합을 위한 지역 생태수문 모사 시스템(RHESSys)의 모수화와 적용)

  • Kim, Eun-Sook;Kang, Sin-Kyu;Lee, Bo-Ra;Kim, Kyong-Ha;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Despite the close linkage in changes between the ecological and hydrological processes in forest ecosystems, an integrative approach has not been incorporated successfully. In this study, based on the vegetation and hydrologic data of the Gwangneung headwater catchment with the Geographic Information System, we attempted such an integrated approach by employing the Regional Hydro-Ecologic Simulation System (RHESSys). To accomplish this, we have (1) constructed the input data for RHESSys, (2) developed an integrated calibration system that enables to consider both ecological and hydrological processes simultaneously, and (3) performed sensitivity analysis to estimate the optimum parameters. Our sensitivity analyses on six soil parameters that affect streamflow patterns and peak flow show that the decay parameter of horizontal saturated hydraulic conductivity $(s_1)$ and porosity decay by depth (PD) had the highest sensitivity. The optimization of these two parameters to estimate the optimum streamflow variation resulted in a prediction accuracy of 0.75 in terms of Nash-Sutcliffe efficiency (NSec). These results provide an important basis for future evaluation and mapping of the watershed-scale soil moisture and evapotranspiration in forest ecosystems of Korea.

Economic Valuation of Multi-functionality on an Eco-pastoral system in Alpine grassland (산지생태축산의 다원적 기능에 대한 가치 평가)

  • Kim, Se-Hyuk;Kim, Tae-Kyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.298-309
    • /
    • 2018
  • This study examined the multi-functionality of an eco-pastoral system in alpine grassland and measured its economic value. The multi-functionality can be divided into three categories: direct-use value, indirect-use value, and heritage value. Direct-use value includes both extractive (forage and livestock production) and non-extractive (recreation and tourism) functions. Indirect-use value includes the functions of water conservation, soil erosion control, atmospheric control, landscape, livestock-manure management, and forest firebreaks. The heritage value includes the function of species diversity. The results showed that the annual value for 1 hectare of the eco-pastoral system in alpine grassland's direct use was estimated to be 21,090,874 Korean won; the indirect-use value was 15,562,203 won when the landscape in grassland system, and 16,018,224 won when the landscape comprised in silvopastoral system. The value of the species diversity in heritage terms ranged from 767,273 to 1,578,845 won, depending on whether it included any endangered species. The total value of multi-functionality of the eco-pastoral system in alpine grassland was estimated to be a minimum of 37,420,350 won/ha and a maximum of 38,687,942 won/ha. The results of this study can provide useful insights for the eco-pastoral system in alpine grassland policies in Republic of Korea.

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

Evaluation of Mechanical Performance and Flame Retardant Characteristics of Biomass-based EVA Composites using Intumescent Flame Retardant Technology

  • Park, Ji-Won;Kim, Hoon;Lee, Jung-Hun;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.189-201
    • /
    • 2018
  • Intumescent system is a highly effective flame retardant technology that takes advantage of the mechanism of foaming and carbonization. In order to materialize Intumescent system, it is necessary to use reinforcement material to improve the strength of the material. In this study, we used kenaf as a natural fiber to manufacture intumescent/EVA (ethylene vinyl acetate) composites to improve mechanical and flame retardant performance. Finally two materials with different particle shape are applied to one system. Therefore, the influence factors of the particles with different shapes on the composite material were analyzed based on the tensile test. For this purpose, we have used the tensile strength analysis model and confirmed that it can only act as a partial strength reinforcement due to weak binding force between the matrix and particles. In the combustion characteristics analysis using cone calorimeter and UL 94, the combustion characteristics were enhanced as the content of Intuemscent was increased. As the content of kenaf increased, combustion characteristics were strengthened and carbonization characteristics were weakened. Through the application of kenaf, it can be confirmed that elastic modulus improvement and combustion characteristics can be strengthened, which confirmed the possibility of development of environmentally friendly flame retardant materials.

Trend on Technology Development of Bioenergy from Woody Biomass (목질계 바이오매스를 이용한 바이오에너지 기술개발 동향)

  • Kwon, Gu-Joong;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • Recently, various efforts for the extended utilization of woody biomass has been attempted due to the fact that global warming, energy and environmental problems are urgent ones to be solved. Development of new energy sources at our national security level is desperately needed as we depend on almost all of energies supplied from other countries, let alone the economic crisis caused by oil price hike. Woody biomass can be converted to energy by means of thermochemical, biological, or direct combustion processes. Many processes are available for producing bioenergy, such as bioethanol, wood pellet, wood chip, combined heat, and power system. Political support and R&D investment should be provided that can boost the utilization of the wood biomass, the eco-environment, and recyclable and alternative energy resources for national power security. In addition, a long-term strategy that can utilize unused and low efficient woody biomass resources, and systematically collect and manage them in a national level should be set up. Even though the possibility in total exchange of fossil oil with woody biomass is quite low, technology developments of woody biomass for the solution to global warming and environmental problem through its commercialization are expected to grow steadily.

  • PDF

Preparation of Eco-friendly and High Strength Paper for Viscose Rayon Yarn (친환경 고강도 인견사용 종이 제조)

  • Hwang, Sung-Jun;Kim, Hyoung-Jin;Bae, Paek-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.154-163
    • /
    • 2015
  • Because of acute or chronic intoxication by carbon disulfide, viscose rayon industry is strictly subjected to environment regulatory approval. Recently, non-wood fibers are frequently considered as a raw materials for the manufacture of specialty paper for the higher physical strength and functionality. Among the non-wood fibers, hemp bast fiber is one of the most widely used materials in viscose rayon yarn industries. In this study, the handsheet for manufacturing the viscose rayon yarn was prepared with wood pulp fibers and hemp bast fibers. The proper mixing ratio of wood fibers and hemp bast fibers with dry-strength agent and nano-celluloses was analysed in terms of physical and mechanical strength of sheet for viscose rayon yarn. The papermaking conditions for high mechanical strength of sheet were obtained by mixing the SwBKP and HwBKP fibers with freeness level of 200 mL CSF. The dual polymer system by controlling the addition ratio of PVAm and anionic PAM was also important. The addition of nano-cellulose into wet-end furnishes increased the physical strength of sheet, and improved the paper structure for the production of viscose rayon yarn.

Pilot-Project Design on Introduction of Payment of Forest Landscape Service (산림경관서비스 지불제 도입을 위한 시범사업 설계)

  • Choi, Jaeyong;Lee, Dongkun;Lee, Hochul;Ko, Jaechun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.112-122
    • /
    • 2009
  • Payment of Forest Landscape Service (PFLS) is based on the value of landscape conservation and is a positive forest policy inducing the owners of mountains to improve environmental service quality with economic incentives. The purpose of this study is to test the feasibility of PFLS and find out the elements related to PFLS such as associated statutes, target applications, eligible owner's requirements, and applicable environmental services. Research sites were selected in designated reserved forests by law and surveys were carried out with 28 professional forestry engineers and 10 owners of reserved forests located in Chungnam Province in November, 2008. As a result, the owners are willing to participate pilot-project of PFLS if they could have tax incentives. Preferred activities in their forestry are eco-tourism and carbon emission trading as PFLS business model. Although they expect low economic benefit from the PFLS, respondents answered introducing PFLS will give good opportunities for owners of a reserved forest to enhance willingness to manage their forestry properly for the landscape conservation. In this study, PFLS evaluation indicators and policy directions are established and recommends the strategies to cope with changing needs of forestry conservation by inducing the owners' active participation in the sustainable forest landscape management.

Properties of Bleachability of Paper Mulberry Pulp by Hydrogen Peroxide and Ultrasonication Bleaching System (과산화수소와 초음파 표백 시스템에 따른 닥나무 펄프의 표백 효율 특성)

  • Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Nowadays, the concern on the environmental load of bleaching process gave rise to the process of ECF(elemental chlorine free) and TCF(total clorine free). These sequences are based on oxygen-derived compounds such as oxygen, ozone, and hydrogen peroxide which is used as a typical eco-friendly bleaching agent. In this study, paper mulberry pulp was bleached with hydrogen peroxide and some bleaching process were accompanied with ultrasonication in order to increase the bleaching efficiency. The best bleaching efficiency of paper mulberry pulp was obtained in the condition of hydrogen peroxide and ultrasonication(20 kHz) bleaching system at $45^{\circ}C$ for 30 min. The brightness and kappa number of paper mulberry pulp were gained to 5.09% and 3.52 respectively. and yield was slightly loosed to 2%. Therefore, the efficiency of hydrogen peroxide and ultrasonication bleaching system of paper mulberry pulp was superior to the conventional hydrogen peroxide bleaching system. Magnesium sulfate acted as a bleaching stabilizer for the increasement of yield. As a result, the yield and viscosity were increased to 2.2% and 12% respectively.

Plant Regeneration of Hybrid Poplars Through Nodule Culture System (Nodule 배양방법(培養方法)을 이용(利用)한 잡종(雜種)포플러의 식물체(植物體) 재분화(再分化))

  • Chung, Kyung Ho;Chun, Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.1-8
    • /
    • 1991
  • Developmental micropropagation method and somatic embryogenesis for hybrid poplars, Populns ehrarnericana Eco28, P. nigra ${\times}$ P. moximowiczii 62-9, were established using nodule culture system. Calli of Eco28 and 62-9 clone were initiated from leaf explant on the medium with 0.5mg/l and 2.0mg/l 2, 4-D, respectively. Cell suspension culture was established from callus derived from leaf explant culture. When suspended on MS medium with optimal combination of BA and NAA fine nodules were obtained after 2 weeks of culture. For shoot regeneration, nodules were transferred into liquid and agar solidified medium. Numerous shoots were regenerated from nodules of 62-9 on liquid media. Organogenesis was effectively achieved on agar solidified regeneration media containing different concentrations of BA and adenine sulfate. Average numbers of 27 and 24 shoots per nodule were induced from 62-1 and Eco28 clones after 8 weeks of culture, respectively. In addition, somatic embryogenesis also occurred in the same regeneration medium. This procedure can be applied to vegetative propagation, utilization of somaclonal variation, production of secondary metabolite and materials of biotechnology research.

  • PDF