• Title/Summary/Keyword: forest decision-making

Search Result 160, Processing Time 0.024 seconds

Study on Failure Classification of Missile Seekers Using Inspection Data from Production and Manufacturing Phases (생산 및 제조 단계의 검사 데이터를 이용한 유도탄 탐색기의 고장 분류 연구)

  • Ye-Eun Jeong;Kihyun Kim;Seong-Mok Kim;Youn-Ho Lee;Ji-Won Kim;Hwa-Young Yong;Jae-Woo Jung;Jung-Won Park;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.30-39
    • /
    • 2024
  • This study introduces a novel approach for identifying potential failure risks in missile manufacturing by leveraging Quality Inspection Management (QIM) data to address the challenges presented by a dataset comprising 666 variables and data imbalances. The utilization of the SMOTE for data augmentation and Lasso Regression for dimensionality reduction, followed by the application of a Random Forest model, results in a 99.40% accuracy rate in classifying missiles with a high likelihood of failure. Such measures enable the preemptive identification of missiles at a heightened risk of failure, thereby mitigating the risk of field failures and enhancing missile life. The integration of Lasso Regression and Random Forest is employed to pinpoint critical variables and test items that significantly impact failure, with a particular emphasis on variables related to performance and connection resistance. Moreover, the research highlights the potential for broadening the scope of data-driven decision-making within quality control systems, including the refinement of maintenance strategies and the adjustment of control limits for essential test items.

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

i-Tree Canopy-based Decision Support Method for Establishing Climate Change Adaptive Urban Forests (기후변화적응형 도시림 조성을 위한 i-Tree Canopy 기반 의사결정지원 방안)

  • Tae Han Kim;Jae Young Lee;Chang Gil Song;Ji Eun Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • The accelerated pace of climate crisis due to continuous industrialization and greenhouse gas emissions necessitates sustainable solutions that simultaneously address mitigation and adaptation to climate change. Naturebased Solutions (NbS) have gained prominence as viable approaches, with Green Infrastructure being a representative NbS. Green Infrastructure involves securing green spaces within urban areas, providing diverse climate adaptation functions such as removal of various air pollutants, carbon sequestration, and isolation. The proliferation of Green Infrastructure is influenced by the quantification of improvement effects related to various projects. To support decision-making by assessing the climate vulnerability of Green Infrastructure, the U.S. Department of Agriculture (USDA) has developed i-Tree Tools. This study proposes a comprehensive evaluation approach for climate change adaptation types by quantifying the climate adaptation performance of urban Green Infrastructure. Using i-Tree Canopy, the analysis focuses on five urban green spaces covering more than 30 hectares, considering the tree ratio relative to the total area. The evaluation encompasses aspects of thermal environment, aquatic environment, and atmospheric environment to assess the overall eco-friendliness in terms of climate change adaptation. The results indicate that an increase in the tree ratio correlates with improved eco-friendliness in terms of thermal, aquatic, and atmospheric environments. In particular, it is necessary to prioritize consideration of the water environment sector in order to realize climate change adaptive green infrastructure, such as increasing green space in urban areas, as it has been confirmed that four out of five target sites are specialized in improving the water environment.

  • PDF

A case study on the economic feasibility of different patterns of green care and healing complexes

  • Koo, Seungmo;Kim, Dae Sik;Koo, Hee Dong;Lee, Han Joon;Park, Bum Jin;Kim, Kyoung-Chan
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.451-461
    • /
    • 2017
  • Korean agriculture has recently focused on the 6th dimension of industrialization, which includes the functions of healing and care. The green care and healing business is one of the most representative models, satisfying modern consumers' needs for care or healing in rural agricultural environments. Many studies have shown physical and social benefits from green care and healing, but studies regarding economic performance are rarely found. The present study aimed to analyze the economic feasibility of different green care and healing farm complexes proposed in recent domestic research, with various possible combinations of business scenarios. The results show that most of the scenarios are economically feasible as B/C (benefit-cost ratio) and IRR (internal rate of return) are 1.19 and 8.53%, respectively, under scenario 1. This study also performed a break-even analysis for providing more flexible decision-making information. Overall, scenario 1 from green care and healing site and scenario 4 from green care and healing cluster are found to be superior to the other scenarios in terms of B/C and IRR. The scenarios in this study reflect the domestic farms or complexes which have similar functions of care or healing. Therefore, the results of this study provide information on practical policies and business implications in making decisions on the specific size and operational patterns when adopting green care and healing complexes by central or local governments and private sectors in the future.

The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea (MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.97-109
    • /
    • 2019
  • Degree days have been determined using temperature data measured at nearby weather stations to a site of interest to produce information for supporting decision-making on agricultural production. Alternatively, the data products of Moderate Resolution Imaging Spectroradiometer (MODIS) can be used for estimation of degree days in a given region, e.g., Korean Peninsula. The objective of this study was to develop a simple tool for processing the MODIS product for estimating cooling degree days (CDD), which would help assessment of heat stress conditions for a crop as well as energy requirement for greenhouses. A set of scripts written in R was implemented to obtain temperature profile data for the region of interest. These scripts had functionalities for processing spatial data, which include reprojection, mosaicking, and cropping. A module to extract air temperature at the surface pressure level was also developed using R extension packages such as rgdal and RcppArmadillo. Random forest (RF) models, which estimate mean temperature and CDD with a different set of MODIS data, were trained at 34 sites in South Korea during 2009 - 2018. Then, the values of CDD were calculated over Korean peninsula during the same period using those RF models. It was found that the CDD estimates using the MODIS data explained >74% of the variation in the CDD measurements at the weather stations in North Korea as well as South Korea. These results indicate that temperature data derived from the MODIS atmospheric products would be useful for reliable estimation of CDD. Our results also suggest that the MODIS data can be used for preparation of weather input data for other temperature-based agro-ecological models such as growing degree days or chill units.

Analysis of influential factors of cyanobacteria in the mainstream of Nakdong river using random forest (랜덤포레스트를 이용한 낙동강 본류의 남조류 발생 영향인자 분석)

  • Jung, Woo Suk;Kim, Sung Eun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, the main influencing factors of the occurrence of cyanobacteria at each of the eight Multifunctional weirs were derived using a random forest, and a categorical prediction model based on a Algal bloom warning system was developed. As a result of examining the importance of variables in the random forest, it was found that the upstream points were directly affected by weir operation during the occurrence of cyanobacteria. This means that cyanobacteria can be managed through efficient security management. DO and E.C were indicated as major influencers in midstream. The midstream section is a section where large-scale industrial complexes such as Gumi and Gimcheon are concentrated as well as the emissions of basic environmental facilities have a great influence. During the period of heatwave and drought, E.C increases along with the discharge of environmental facilities discharged from the basin, which promotes the outbreak of cyanobacteria. Those monitoring sites located in the middle and lower streams are areas that are most affected by heat waves and droughts, and therefore require preemptive management in preparation for the outbreak of cyanobacteria caused by drought in summer. Through this study, the characteristics of cyanobacteria at each point were analyzed. It can provide basic data for policy decision-making for customized cyanobacteria management.

Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning (머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발)

  • Chanho Kim;Minshick Choi;Chonghyo Joo;A-Reum Lee;Yun Gun;Sungho Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.214-224
    • /
    • 2024
  • Valves play an essential role in a chemical plant such as regulating fluid flow and pressure. Therefore, optimal selection of the valve size and type is essential task. Valve size and type have been selected based on theoretical formulas about calculating valve sizing coefficient (Cv). However, this approach has limitations such as requiring expert knowledge and consuming substantial time and costs. Herein, this study developed a model for predicting valve sizes and types using machine learning. We developed models using four algorithms: ANN, Random Forest, XGBoost, and Catboost and model performances were evaluated using NRMSE & R2 score for size prediction and F1 score for type prediction. Additionally, a case study was conducted to explore the impact of phases on valve selection, using four datasets: total fluids, liquids, gases, and steam. As a result of the study, for valve size prediction, total fluid, liquid, and gas dataset demonstrated the best performance with Catboost (Based on R2, total: 0.99216, liquid: 0.98602, gas: 0.99300. Based on NRMSE, total: 0.04072, liquid: 0.04886, gas: 0.03619) and steam dataset showed the best performance with RandomForest (R2: 0.99028, NRMSE: 0.03493). For valve type prediction, Catboost outperformed all datasets with the highest F1 scores (total: 0.95766, liquids: 0.96264, gases: 0.95770, steam: 1.0000). In Engineering Procurement Construction industry, the proposed fluid-specific machine learning-based model is expected to guide the selection of suitable valves based on given process conditions and facilitate faster decision-making.

Fundamental Economic Feasibility Analysis on the Transition of Production Structure for a Forest Village in LAO PDR (라오스 산촌마을의 생산구조전환을 위한 투자 경제성 기초 분석)

  • Lee, Bohwe;Kim, Sebin;Lee, Joon-Woo;Rhee, Hakjun;Lee, Sangjin;Lee, Joong-goo;Baek, Woongi;Park, Bum-Jin;Koo, Seungmo
    • The Journal of the Korean Institute of Forest Recreation
    • /
    • v.22 no.4
    • /
    • pp.11-22
    • /
    • 2018
  • This study analyzes the economic feasibility on the transition of production structure to increase income for a local forest village in Laos PDR. The study area was the Nongboua village in Sangthong district where the primary product is rice from rice paddy. Possible strategies were considered to increase the villagers' revenue, and Noni (Morinda citrifolia) was production in the short-term. We assumed that the project period was for 20 years for the analysis, and a total of 1,100 Noni tree was planted in 1 ha by $3m{\times}3m$ spacing. This study classified basic scenario one, scenario two, scenario three by the survival rate and purchase pirce of Noni. Generally Noni grows well. However, the seedlings' average survival rate (= production volume) was set up conservatively in this study to consider potential risks such as no production experience of Noni and tree disease. The scenario one assumed that the survival rate of Noni seedlings was 50% for 0-1 years, 60% for 0-2 years, and 70% for 3-20 years; the scenario two, 10% less, i.e., 40%, 50%, and 60%; and the scenario three, 10% less, i.e., 40%, 50%, 60% and purchase price 10% less, i.e., $0.29 to $0.26, respectively. Our analysis showed that all 3 scenarios resulted in economically-feasible IRR (internal rate of return) of 24.81%, 19.02%, and 16.30% of with a discounting rate of 10%. The B/C (benefit/cost) ratio for a unit area (1ha) was also analyzed for the three scenarios with a discounting rate of 10%, resutling in the B/C ratio of 1.71, 1.47, and 1.31. The study results showed that the Nongboua village would have a good opportunity to improve its low-income structure through planting and managing alternative crops such as Noni. Also the results can be used as useful decision-making information at a preliminary analysis level for planning other government and public investment projects for the Nonboua village.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.