• Title/Summary/Keyword: forecasting system

Search Result 1,552, Processing Time 0.031 seconds

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

A Study on Supplied Forecasting of Short-term Electrical Power using Fuzzy Compensative Algorithm

  • Choo Yeon-Gyu;Lee Kwang-Seok;Kim Hyun-Duck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.779-783
    • /
    • 2006
  • A The estimation of electrical power consumption is becoming more important to supply stabilized electrical power recently. In this paper, we propose a supplied forecasting system of electrical power using Fuzzy Compensative Algorithm to estimate electrical load accurately than the previous. We evaluate a time series of supplied electrical power have the chaotic character using quantitative and qualitative analysis, compose a forecasting system by the maximum change $rate(\alpha)$ of Fuzzy Algorithm and compensative parameter. Simulating it for obtained time series, we can obtain more accurate results than the previous proposed system.

  • PDF

A new approach to short term load forecasting (전력계통부하예측에 관한 연구)

  • 양흥석
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.260-264
    • /
    • 1980
  • In this paper, a new algorithm is derived for short term load forecasting. The load model is represented by the state variable form to exploit the Kalman filter techniques. The suggested model has advantages that it is unnecessarty to obtain the coefficients of the harmonic components and its coefficients are not explicitly included in the model. Case studies were carried out for the hourly power demand forecasting of the Korea electrical system.

  • PDF

Regional Long-term/Mid-term Load Forecasting using SARIMA in South Korea (계절 ARIMA 모형을 이용한 국내 지역별 전력사용량 중장기수요예측)

  • Ahn, Byung-Hoon;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8576-8584
    • /
    • 2015
  • Load forecasting is needed to make supply and demand plan for a stable supply of electricity. It is also necessary for optimal operational plan of the power system planning. In particular, in order to ensure stable power supply, long-term load forecasting is important. And regional load forecasting is important for tightening supply stability. Regional load forecasting is known to be an essential process for the optimal state composition and maintenance of the electric power system network including transmission lines and substations to meet the load required for the area. Therefore, in this paper we propose a forecasting method using SARIMA during the 12 months (long-term/mid-term) load forecasting by 16 regions of the South Korea.

A New Metric for Evaluation of Forecasting Methods : Weighted Absolute and Cumulative Forecast Error (수요 예측 평가를 위한 가중절대누적오차지표의 개발)

  • Choi, Dea-Il;Ok, Chang-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.159-168
    • /
    • 2015
  • Aggregate Production Planning determines levels of production, human resources, inventory to maximize company's profits and fulfill customer's demands based on demand forecasts. Since performance of aggregate production planning heavily depends on accuracy of given forecasting demands, choosing an accurate forecasting method should be antecedent for achieving a good aggregate production planning. Generally, typical forecasting error metrics such as MSE (Mean Squared Error), MAD (Mean Absolute Deviation), MAPE (Mean Absolute Percentage Error), and CFE (Cumulated Forecast Error) are utilized to choose a proper forecasting method for an aggregate production planning. However, these metrics are designed only to measure a difference between real and forecast demands and they are not able to consider any results such as increasing cost or decreasing profit caused by forecasting error. Consequently, the traditional metrics fail to give enough explanation to select a good forecasting method in aggregate production planning. To overcome this limitation of typical metrics for forecasting method this study suggests a new metric, WACFE (Weighted Absolute and Cumulative Forecast Error), to evaluate forecasting methods. Basically, the WACFE is designed to consider not only forecasting errors but also costs which the errors might cause in for Aggregate Production Planning. The WACFE is a product sum of cumulative forecasting error and weight factors for backorder and inventory costs. We demonstrate the effectiveness of the proposed metric by conducting intensive experiments with demand data sets from M3-competition. Finally, we showed that the WACFE provides a higher correlation with the total cost than other metrics and, consequently, is a better performance in selection of forecasting methods for aggregate production planning.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

An Algorithm of Short-Term Load Forecasting (단기수요예측 알고리즘)

  • Song Kyung-Bin;Ha Seong-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

Annual Yearly Load Forecasting by Using Seasonal Load Characteristics With Considering Weekly Normalization (주단위 정규화를 통하여 계절별 부하특성을 고려한 연간 전력수요예측)

  • Cha, Jun-Min;Yoon, Kyoung-Ha;Ku, Bon-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.199-200
    • /
    • 2011
  • Load forecasting is very important for power system analysis and planning. This paper suggests yearly load forecasting of considering weekly normalization and seasonal load characteristics. Each weekly peak load is normalized and the average value is calculated. The new hourly peak load is seasonally collected. This method was used for yearly load forecasting. The results of the actual data and forecast data were calculated error rate by comparing.

  • PDF

A Case Study on the Auto-Adjustment System of the Regression Forecasting Model Parameters (Regression 모형(模型)에 있어 모수(母數)의 자동조절(自動調節) 시스템에 관한 사례연구(事例硏究))

  • Kim, Gwang-Seop;Lee, Chang-Hyeong;Hong, U-Chang
    • Journal of Korean Society for Quality Management
    • /
    • v.9 no.2
    • /
    • pp.2-9
    • /
    • 1981
  • This paper deals with the critical role when adjustments of the regression model parameters play in forecasting. It attempts to formulate a methodology or systematic procedure for (1) detecting the points of adjustments and (2) finding the adjusted regression model parameters. The paper shows how the information of past experience in forecasting can be used future forecasting.

  • PDF