• 제목/요약/키워드: forecast model

검색결과 1,652건 처리시간 0.032초

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

Earnings Forecasts and Firm Characteristics in the Wholesale and Retail Industries

  • LIM, Seung-Yeon
    • 유통과학연구
    • /
    • 제20권12호
    • /
    • pp.117-123
    • /
    • 2022
  • Purpose: This study investigates the relationship between earnings forecasts estimated from a cross-sectional earnings forecast model and firm characteristics such as firm size, sales volatility, and earnings volatility. Research design, data and methodology: The association between earnings forecasts and the aforementioned firm characteristics is examined using 214 firm-year observations with analyst following and 848 firm-year observations without analyst following for the period of 2011-2019. I estimate future earnings using a cross-sectional earnings forecast model, and then compare these model-based earnings forecasts with analysts' earnings forecasts in terms of forecast bias and forecast accuracy. The earnings forecast bias and accuracy are regressed on firm size, sales volatility, and earnings volatility. Results: For a sample with analyst following, I find that the model-based earnings forecasts are more accurate as the firm size is larger, whereas the analysts' earnings forecasts are less biased and more accurate as the firm size is larger. However, for a sample without analyst following, I find that the model-based earnings forecasts are more pessimistic and less accurate as firms' past earnings are more volatile. Conclusions: Although model-based earnings forecasts are useful for evaluating firms without analyst following, their accuracy depends on the firms' earnings volatility.

범주형 광역화 모델에 의한 초미세먼지 예보 개선 (Improvement of PM2.5 Forecast by Categorical Wide Area Model)

  • 이기훈;권희용
    • 한국멀티미디어학회논문지
    • /
    • 제25권3호
    • /
    • pp.468-475
    • /
    • 2022
  • Currently, fine dust forecast models are operated by dividing the country into 19 regions. Therefore, it is important to reduce the learning time and the number of models as well as accurate forecast performance to operate lots of forecast models. In this paper, we develop a categorical wide area model that outputs forecast results categorically and integrates the regions with similar regional characteristics. The proposed model improved the convergence rate by 223 times compared to the existing model, which outputs at a single concentration value, and reduced the number of forecast models by a third.

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

평일환산비를 이용한 단기부하상정 알고리즘 (Short-Term Load Forecast Algorithm using Weekday Change Ratio)

  • 고희석;이충식
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권5호
    • /
    • pp.62-66
    • /
    • 1997
  • 본 논문에서는 평일환산비를 사용하여 단기부하를 상정하는 알고리즘을 제시한다. 평일환산비로 주 주기성을 제거하고, 5개의 상정구간과 3 형태의 중회귀모델을 구성한다. 상정결과 상정도가 2.8〔%〕정도로 양호한 결과를 얻었다. 이로서 특수일(주말)부하의 전력수요상정도 가능하게 되었다. 중회귀 모델을 이용한 전력수요상정시의 큰 문제점인 특수일(주말)의 전력수요를 상정하는 방법이 제시됨으로서 상정도의 향상은 물론 신뢰성있는 상정모델의 구성이 가능하게 되었다.

  • PDF

그룹 가치스코어 모형을 활용한 강수확률예보의 사용자 만족도 효용 분석 (Analysis of Users' Satisfaction Utility for Precipitation Probabilistic Forecast Using Collective Value Score)

  • 윤승철;이기광
    • 경영과학
    • /
    • 제32권4호
    • /
    • pp.97-108
    • /
    • 2015
  • This study proposes a mathematical model to estimate the economic value of weather forecast service, among which the precipitation forecast service is focused. The value is calculated in terms of users' satisfaction or dissatisfaction resulted from the users' decisions made by using the precipitation probabilistic forecasts and thresholds. The satisfaction values can be quantified by the traditional value score model, which shows the scaled utility values relative to the perfect forecast information. This paper extends the value score concept to a collective value score model which is defined as a weighted sum of users' satisfaction based on threshold distribution in a group of the users. The proposed collective value score model is applied to the picnic scenario by using four hypothetical sets of probabilistic forecasts, i.e., under-confident, over-confident, under-forecast and over-forecast. The application results show that under-confident type of forecasts outperforms the others as a measure of the maximum collective value regardless of users' dissatisfaction patterns caused by two types of forecast errors, e.g., miss and false alarm.

가치스코어 모형을 이용한 기상정보의 기업 의사결정에 미치는 영향 평가 (The Effect of Meteorological Information on Business Decision-Making with a Value Score Model)

  • 이기광;이중우
    • 산업경영시스템학회지
    • /
    • 제30권2호
    • /
    • pp.89-98
    • /
    • 2007
  • In this paper the economic value of weather forecasts is valuated for profit-oriented enterprise decision-making situations. Value is estimated in terms of monetary profits (or benefits) resulted from the forecast user's decision under the specific payoff structure, which is represented by a profit/loss ratio model combined with a decision function and a value score (VS). The forecast user determines a business-related decision based on the probabilistic forecast, the user's subjective reliability of the forecasts, and the payoff structure specific to the user's business environment. The VS curve for a meteorological forecast is specified by a function of the various profit/loss ratios, providing the scaled economic value relative to the value of a perfect forecast. The proposed valuation method based on the profit/loss ratio model and the VS is adapted for hypothetical sets of forecasts and verified for site-specific probability of precipitation forecast of 12 hour and 24 hour-lead time, which is generated from Korea meteorological administration (KMA). The application results show that forecast information with shorter lead time can provide the decision-makers with great benefits and there are ranges of profit/loss ratios in which high subjective reliability of the given forecast is preferred.

태양광발전 단기예측모델 개발 (The Development of the Short-Term Predict Model for Solar Power Generation)

  • 김광득
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.