• 제목/요약/키워드: forced vibration

검색결과 535건 처리시간 0.032초

디젤 발전기세트의 구조진동특성 연구 (Analysis and Prediction of Structural Vibration for Diesel Engine Generator Set)

  • 이수목;김관영;김원현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.948-954
    • /
    • 2002
  • The structural vibration of a diesel generator set was investigated through analyses and tests. FE modeling and normal mode analysis were performed and compared with measured results for both structure components and generator set assembly. The results of component analyses were fairly well coincident with measured results but those of assembled generator set showed more or less discrepancies. Discussions were given about the uncertainties for vibration characteristics of component structures and assembled running structures especially concerning their nonlinearities and damping effects. Detailed excitation analysis fellowed by forced response analysis was done from the engine and pressure data to compare with the actual measured vibration. As results the vibration prediction for frame structures of reciprocating internal combustion engine was confirmed reliable to some extent.

  • PDF

PZT를 이용한 다중 모드 강제 진동의 능동 제어 (Active Control of Multi-Mode Forced Vibration Using PZT)

  • 한상보;윤신일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.407-412
    • /
    • 1997
  • There has been a recent surge of research interest on the smart structure. This paper presents active vibration control scheme of multi-mode forced vibration using piezoceramic sensors/actuators. The control scheme adopted is the Positive Position Feedback control. Among various vibration control techniques, PPF control technique makes use of generalized displacement measurements to accomplish vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratio and feedback gains of the PPF controllers are compared with respect to the control efficiency. The results indicate that steady state vibration under wideband excitation can be controlled effectively when multiple sets of PZT sensors/actuators were used with PPF control technique.

  • PDF

전달매트릭스법에 의한 다지점지지계의 연성강제감쇠 횡진동 계산에 관한 연구 (A Study on the Coupled Forced Lateral Vibration of Multi-Supported Shafting by the Transfer Matrix Method)

  • 이돈출;박병학;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제14권2호
    • /
    • pp.35-47
    • /
    • 1990
  • The natural frequency of lateral vibration for ship's propulsion shafting tends to become lower as the relative stiffness of supproted system of the propulsion shafting decreases and the weight of shafting increases. Especially, the propulsion shafting of high-power ships such as car ferries, roll-on/roll-off, and container ships are susceptible to lateral vibration for their resonant speeds are happened to be in ordinary operating speed ranges. So far, many papers on the lateral vibration of ship's propulsion shaftings are published but they treated mainly special cases and not explained explicitly the calculation process. In this paper, the calculation processes of undamped and also forced damped lateral vibration by the transfer matrix method are presented and the calculation programs are developed. With the developed computer programs, a ship's propulsion shafting which was introduced on the published paper is analyzed for its lateral vibration and also the lateral vibration of the main drive shaft for a lathe is calculated to show the availiability of developed computer programs.

  • PDF

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

Vibration Control of a Flexible Cantilevers Beam with Added Mass

  • Kwon, Tae-Kyu;Park, Byeong-Yong;Lim, Suk-Jeong;Yun, Yeo-Hung;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.71.5-71
    • /
    • 2001
  • This paper presents the vibration control of a flexible intelligent beam with added mass. The materials which is a glass fiber reinforced(GFR) thermoplastic composite is employed to achieve vibration characteristics according to added mass induced end of composite beam. In the experiments of forced vibration control, the -controller are employed to achieve vibration suppression in forced vibration situations. Also, in the controller design, 1st and 2nd´s natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. By designing a controller using mu-synthesis, robust performance against measurement noise, various modeling.

  • PDF

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

지반-말뚝 상호작용계의 강제진동해석 (A Forced Vibration Analysis of Soil-Pile Interaction System)

  • 김민규
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.136-143
    • /
    • 2001
  • In this study, a numerical analysis for soil-pile interaction systems in multi-layered half planes under a forced vibration is presented. The soil-pile interaction system is divided into two parts, so called near field and far field. The near field soil using finite elements and piles using beam elements are modeled. The far field soil media is implemented using boundary elements those can automatically satisfy the condition of wave radiation. These two fields are numerically coupled by imposing displacement compatibility condition at the interface between the near field and the far field. For the verification, the forced vibration test was simulated and the response under horizontal and vertical harmonic loads at the pile cap in the layered half plane was determined. The results are compared to the theoretical and experimental results of the literatures to verify the proposed soil-pile interaction analysis formulation.

  • PDF

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석 (Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller)

  • 공창덕;윤재휘;박현범
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.217-221
    • /
    • 2007
  • 본 연구에서는 대상체인 소형 위그선의 주날개 구조를 엔진 및 프로펠러의 기진에 의한 강제진동 해석을 수행하였다. 대상 위그선은 2행정의 왕복엔진을 날개의 좌 우에 각각 장착하여 프로펠러에 의한 추력으로 비행하며, 미는 형식(Pusher Type)의 엔진 배열을 취하고 있다. 엔진의 주요 진동 특성인 H-mode 와 X-mode 를 특정 가진 주파수로 하여 주파수 응답 해석을 수행하였고, 엔진의 횡방향 진동 모드인 L-mode를 프로펠러에 회전에 의해 진동을 수반하는 기진 추력으로 가정하여 과도응답 해석을 수행하였다.

  • PDF

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.