• Title/Summary/Keyword: forced terms

Search Result 172, Processing Time 0.027 seconds

Forced Vibration of Car Seat and mannequin System (자동차 시트 및 마네킹 시스템의 강제 진동)

  • Kim, Seong-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.122-132
    • /
    • 2000
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in 'Free Vibration of Car seat and Mannequin System' nonlinear and linear equations of motions were rederived for forced vibration and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests mannequin's head had a lot of problems and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints linear analyses were performed. New sets of linear spring and damping coefficients and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance indicating that this is a feasible method of modeling seated occupants.

  • PDF

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

Review of pulmonary function test in terms of insurance medicine (폐기능검사의 보험의학적 이해)

  • Lee, Sinhyung
    • The Journal of the Korean life insurance medical association
    • /
    • v.33 no.2
    • /
    • pp.8-11
    • /
    • 2014
  • Pulmonary function test is a group of tests which are composed of measurement for lung function. Thy are spirometry, blood-gas analysis, lung volumes, exercise test, diffusion capacity, and bronchial challenge test. In this article, I will review the pulmonary function test and it's application in terms of clinical aspect and insurance medicine. The standard spirometric indicies are forced vital capacity(FVC), forced expiratory volume at 1 second(FEV1), and the ratio of FEV1 over FVC(FEV1/FVC). If the value of FEV1/FVC less than 70%, the examinee has obstructive ventilatory dysfunction.

  • PDF

Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller (엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.217-221
    • /
    • 2007
  • In this study, forced vibrations analysis was performed for main wing of small scale WIG vehicle which is equipped two-stroke pusher type propeller engine, in terms of structural. for the frequency response analysis, excitations were assumed by H-mode(Horizontal mode), X-mode(Twisted mode) which is main vibration mode of engine, and for the transient response analysis, excitations were assumed by L-mode(Longitudinal mode) with propeller thrust which is occurred when it revolution.

  • PDF

Vibration of Car Seat and Mannequin System II (자동차 시트 및 마네킹 시스템의 진동 II)

  • Kim, Seong-Keol;Kim, Joon-Hyun;Park, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.398-403
    • /
    • 2001
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in previous paper. Nonlinear and linear equations of motions were rederived for forced vibration, and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests, mannequin's head had a lot of problems, and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints, linear analyses were performed. New sets of linear spring and damping coefficients, and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance, indicating that this is a feasible method of modeling seated occupants.

  • PDF

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Correlations Between Height and Forced Expiratory Flow Curve Parameters (신장과 노력성 호기곡선 지표간의 상관성)

  • Jin, Bok Hee;Park, Sun Young;Park, Hyea Lim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.199-204
    • /
    • 2004
  • Height has become one of the most important factors to determine the pulmonary function test index, and there is a high correlation between them, so that they have been utilized for evaluating pulmonary function test predictive value or nomogram. Therefore, we have tried to find out that difference and if there is any correlation and linear relationship between height and forced expiratory flow curve. There were a total of 163 subjects, male 93 and female 70. This study was done at the Department of Pulmonary Function Test of Jeon-Ju Presbyterian Hospital and we measured the index at the forced expiratory flow curve of FVC, $FEV_{1.0}$, $FEV_{1.0}$/FVC, $FEF_{25-75%}$, and $FEF_{200-1200m{\ell}}$. When we subjected the group of height more than 160cm, there were gradual increments at FVC(p<0.001), $FEV_{1.0}$(p<0.001), $FEF_{25-75%}$(p<0.05) and $FEF_{200-1200m{\ell}}$(p<0.001), but no changes at $FEV_{1.0}$/FVC in terms of forced expiratory flow curve index. We have analyzed the relationship between height and forced expiratory flow curve, there was a close relationship at FVC(r=0.670, p<0.01), $FEV_{1.0}$(r=0.491, p<0.01), $FEF_{25-75%}$ (r=0.175, p<0.05) and $FEF_{200-1200m{\ell}}$(r=0.370, p<0.01) but there was reciprocal relationship at $FEV_{1.0}$/FVC(r=-0.215, p<0.01). We have tried simple regression analysis to see if height affects forced expiratory flow curve index as a sector, and the result was $FVC(\ell)=0.0642{\times}height(cm)-7.2978$(p<0.01, $R^2=0.449$), $FEV_{1.0}(\ell)=0.0407{\times}height(cm)-4.2774$ (p<0.01, $R^2=0.2411$), $FEV_{1.0}/FVC(%)=-0.2892{\times}height(cm)+121.44$(p<0.01, $R^2=0.0464$), $FEF_{25-75%}(\ell/sec)=0.0176{\times}height(cm)-0.7876$(p<0.05, $R^2=0.0237$), $FEF_{200-1200m{\ell}}(\ell/sec)=0.0967{\times}height(cm)-11.037$(p<0.01, $R^2=0.1214$) this was approved statistically. According to this study, if height is taller than average, forced expiratory flow curve index were increased, there was a close relationship between height and forced expiratory flow curve, and there was a linear relationship as sector between height and forced expiratory flow curve index. Therefore, researches that study other factors such as sex, age, weight, body surface area, and obesity indexes other than height should be done to see if there are any further relationships.

  • PDF

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation (강제조화운동을 이용한 SDM의 세로 및 방향 안정성 미계수 예측)

  • Lee, Hyungro;Lee, Seungsoo;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.948-956
    • /
    • 2012
  • This paper presents the computations of the longitudinal and directional stability derivatives for the SDM(Standard Dynamic Model). The static and dynamic derivatives are evaluated at once using forced harmonic oscillations in the pitch and yaw directions. For the numerical simulations, a 3-D Euler solver that uses a dual time stepping method for unsteady time accurate simulations is applied. This work investigates the variation of the derivatives in terms of the Mach number and the several motion parameters. Good agreement of the pitch and yaw stability derivatives with previously published numerical results and experimental results are observed.