• Title/Summary/Keyword: forced outage

Search Result 36, Processing Time 0.025 seconds

G system with forced and scheduled outages

  • Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.164-176
    • /
    • 1991
  • This paper considers the model of a k-out-of-n :G system with non-identical components which are subject to both forced and planned outages. For the forced outages, it assumes that there are the independent and common-cause outage events causing component failures. Then, the objective is to derive the upper and lower bounds on the mean operating time between system failures in the ample-server model. In addtion, the mean system failure times are also considered.

  • PDF

A Study on Assessment of Forced Outage Rates for Reliability Evaluation of Power System (전력계통의 확률론적 신뢰도평가를 위한 사고확률 추정에 관한 연구)

  • Lee Sang Sik;Tran Trung Tinh;Choi Jae Seok;Jeon D.;Kim T.;Cha S.;Choo J.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.195-198
    • /
    • 2004
  • In recent, the Importance and necessity of some studies on reliability evaluation of grid comes from the recent black-out accidents occurred in the world. The quantity evaluation of transmission system reliability is very important under competitive electricity environment. Accurate probabilistic reliability evaluation depends on assessment of forced outage rate of elements, generators, transmission lines. This paper describes basic theory of relationship between outage rates and reliability evaluation for assessing FOR(forced outage rate) of elements of power system. In case study, FORs assessed and supplied from Canada Electricity Association is introduced and FORs assessed from using actual historical data from 1997 to 2002 for transmission lines of KEPCO system.

  • PDF

Avoided Generation Costs of IPPS Considering Forced Outage Rate and Economic Loading Order (고장정지율과 경제적 투입순서를 고려한 민자발전소의 회피발전비용 계산)

  • 원종률;박종배;김진호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • This paper presents a new method for the evaluation of avoided generation costs. Unlike conventional load decrement method, it exactly considers forced outage rate and economic loading order of IPPs (Independent Power Producers). Therefore we can provide exact generation avoided costs of IPPs by the developed method. Because probabilistic simulation is conducted in this method, effects on the costs of IPPs are exactly considered. Also we suggest an allocation method of avoided generation costs by participation factor. In the case studies we have shown avoided generation costs considering loading order and forced out-age rate by using this method.

Probabilistic Generation Modeling in Electricity Markets Considering Generator Maintenance Outage (전력시장의 발전기 보수계획을 고려한 확률적 발전 모델링)

  • Kim Jin-Ho;Park Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.418-428
    • /
    • 2005
  • In this paper, a new probabilistic generation modeling method which can address the characteristics of changed electricity industry is proposed. The major contribution of this paper can be captured in the development of a probabilistic generation modeling considering generator maintenance outage and in the classification of market demand into multiple demand clusters for the applications to electricity markets. Conventional forced outage rates of generators are conceptually combined with maintenance outage of generators and, consequently, effective outage rates of generators are newly defined in order to properly address the probabilistic characteristic of generation in electricity markets. Then, original market demands are classified into several distinct demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the original demand. We have found that generators have different effective outage rates values at each classified demand cluster, depending on the market situation. From this, therefore, it can be seen that electricity markets can also be classified into several groups which show similar patterns and that the fundamental characteristics of power systems can be more efficiently analyzed in electricity markets perspectives, for this classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

Modeling Generators Maintenance Outage Based on the Probabilistic Method (발전기 보수정지를 고려한 확률적 발전모델링)

  • Kim, Jin-Ho;Park, Jong-Bae;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.804-806
    • /
    • 2005
  • In this paper, a new probabilistic generation modeling method which can address the characteristics of changed electricity industry is proposed. The major contribution of this paper can be captured in the development of a probabilistic generation modeling considering generator maintenance outage and in the classification of market demand into multiple demand clusters for the applications to electricity markets. Conventional forced outage rates of generators are conceptually combined with maintenance outage of generators and, consequently, effective outage rates of generators are new iy defined in order to properly address the probabilistic characteristic of generation in electricity markets. Then, original market demands are classified into several distinct demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the original demand. We have found that generators have different effective outage rates values at each classified demand cluster, depending on the market situation. From this, therefore, it can be seen that electricity markets can also be classified into several groups which show similar patterns and that the fundamental characteristics of power systems can be more efficiently analyzed in electricity markets perspectives, for this classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

  • PDF

FOR(Forced Outage Rate) Calculation with Weather Effects for KEPCO Systems (날씨효과를 고려한 한전계통의 각 송전선로별 고장확률 계산)

  • Kim, Tae-Kyun;Cha, Seung-Tae;Kwak, Bang-Myung;Kim, Jin-O;Lee, Seung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.235-237
    • /
    • 2005
  • This paper presents a method of incorporating weather effects in KEPCO systems reliability evaluation. The effects of adverse weather on composite power system FOR(Forced Outage Rate) increase considerably as the proportion of outages in adverse weather increases. It is therefore important to establish suitable and practical procedures for collecting adverse weather data which can be utilized in realistic KEPCO systems reliability assessment. The modeling procedure proposed in this paper also provides a realistic FOR in KEPCO systems using real historical data.

  • PDF

Tie Line Constrained Equivalent Assisting Generator Model (TEAG) Considering Forced Outage Rates of Transmission Systems

  • Park, Jaeseok;Tran, Trung-Tinh;Sungrok Kang;Park, Dongwook;Jaeyoung Yoon;Seungil Moon;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.91-99
    • /
    • 2004
  • This paper illustrates a tie line constrained equivalent assisting generator (TEA G) model considering forced outage rates of transmission systems for reliability evaluation of interconnected power systems. Interconnections between power systems can provide improved levels of reliability. It is expected that the TEAG model developed in this paper will prove useful in the solution to problems related to the effect of transmission system uncertainties in the reliability evaluation of interconnected power systems. The characteristics and concept of this TEAG considering transmission systems are described in detail by sample studies on a simple test system.

A Comparative Study of Maintenance Scheduling Methods for Small Utilities

  • Ong, H.L.;Goh, T.N.;Eu, P.S.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.1
    • /
    • pp.13-26
    • /
    • 2003
  • This paper presents a comparative study of a few commonly used maintenance scheduling methods for small utilities that consists solely of thermal generating plants. Two deterministic methods and a stochastic method are examined. The deterministic methods employ the leveling of reserve capacity criterion, of which one uses a heuristic rule to level the deterministic equivalent load obtained by using the product of the unit capacity and its corresponding forced outage rate. The stochastic method simulates the leveling of risk criterion by using the peak load carry capacity of available units. The results indicate that for the size and type of the maintenance scheduling problem described In this study, the stochastic method does not produce a schedule which is significantly better than the deterministic methods.

  • PDF

Modeling Planned Maintenance Outage of Generators Based on Advanced Demand Clustering Algorithms (개선된 수요 클러스터링 기법을 이용한 발전기 보수정지계획 모델링)

  • Kim, Jin-Ho;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.172-178
    • /
    • 2006
  • In this paper, an advanced demand clustering algorithm which can explore the planned maintenance outage of generators in changed electricity industry is proposed. The major contribution of this paper can be captured in the development of the long-term estimates for the generation availability considering planned maintenance outage. Two conflicting viewpoints, one of which is reliability-focused and the other is economy-focused, are incorporated in the development of estimates of maintenance outage based on the advanced demand clustering algorithm. Based on the advanced clustering algorithm, in each demand cluster, conventional effective outage of generators which conceptually capture maintenance and forced outage of generators, are newly defined in order to properly address the characteristic of the planned maintenance outage in changed electricity markets. First, initial market demand is classified into multiple demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the initial demand. Then, based on the advanced demand clustering algorithm, the planned maintenance outages and corresponding effective outages of generators are reevaluated. Finally, the conventional demand clusters are newly classified in order to reflect the improved effective outages of generation markets. We have found that the revision of the demand clusters can change the number of the initial demand clusters, which cannot be captured in the conventional demand clustering process. Therefore, it can be seen that electricity market situations, which can also be classified into several groups which show similar patterns, can be more accurately clustered. From this the fundamental characteristics of power systems can be more efficiently analyzed, for this advanced classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.