• Title/Summary/Keyword: forced air cooling

Search Result 102, Processing Time 0.026 seconds

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

Ionic Wind Generator With Third Electrode (3전극형 이온풍 발생장치)

  • Hwang, Deok-Hyun;Jung, Hoi-Won;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.139-140
    • /
    • 2008
  • Cooling systems for electronic equipments are becoming more important. Cooling technologies using natural and forced convection are limited and operated in very low efficiency. A corona discharge is utilized as the driving mechanism for anair pump, which allows for airflow generation with low noise and no moving parts. However they do not enhance the flow rate and overcome the control mechanism of the pump. In this study a point-mesh type air pump, with a third electro de installed near the corona point, has been proposed and investigated by focusing on elevating the ionic wind velocity and power yield. As a result, the significantly enhanced ionic wind velocity and tremendously increased power yield can be obtained with the proposed air pump system.

  • PDF

Experiments on the Heat Transfer and Pressure Drop Characteristics of a Channel with Pin-Fin Array (핀-휜을 삽입한 채널의 열전달 및 압력강하 특성 실험)

  • 신지영;손영석;김상민;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.623-629
    • /
    • 2004
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices, which result in more heat generation by the electronic system. Present cooling technology may not be adequate for the thermal management in the current state-of-the-art electronic equipment. Forced convective heat transfer in a channel filled with pin-fin array is studied experimentally in this paper as an alternative cool-ing scheme for a high heat-dissipating equipment. Various configurations of the pin-fin array are selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. In the low porosity region, interfacial heat transfer and pressure drop seem to show different trend compared to the conventional heat transfer process.

A Study on Heatsink Temperature Distribution according to the Installation Angle of a 30W LED Floodlight (30W급 LED 투광등 설치각도에 따른 히트싱크 온도분포에 관한 연구)

  • Lee, Young Ho;Yi, Chung Seob;Chung, Hanshik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.24-30
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. The results of the empirical test showed that the best temperature intensification was found at 90 with 15-fins, and the heatsink installed perpendicular to the direction of the flow of air was directly connected to the air in the largest heat shield area, leading to the best cooling, and the number of fin also resulted increase in the heat discharge area, resulting in the largest cooling action with 15 fins. It was found that the rate of air flow changed in the range of 1.5m/s to 2.5m/s, but only by a deviation of about $2^{\circ}C$ to $3^{\circ}C$ from the current state of 15 fins at 2.5m/s, and the rate of air flow increased, but the performance of the heat release was not significantly increased. As a result wind speed with minimum air flow conditions of 1.5m/s can greatly contribute to the heat dissipation performance.

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

Design of Heat Dissipation System for 400kW IGBT Inverter (400kw급 IGTB 인버터용 방열 시스템 설계)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.10-14
    • /
    • 2003
  • This paper deals with the design of heat dissipation system using the forced air cooling method. It suggests the method of appropriately dividing the whole thermodynamic system into analytical subsystems and also presents the correspondent analytic or experimental equations to subsystems. The experimental results on the designed thermodynamic system for 400kw 1GBT inverter show the validity of the proposed design method in the steady state.

  • PDF