• Title/Summary/Keyword: forced air cooling

Search Result 102, Processing Time 0.035 seconds

Fluid Flow and Heat Transfer Characteristics around a Surface-Mounted Module Cooled by Forced Air Flow by Piezoelectric Cooling Fan (압전세라믹 냉각팬에 의한 강제 공랭 모듈 주위의 유체유동과 열전달 특성)

  • Park, G.J.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.272-277
    • /
    • 2003
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. A flexible PZT fan with distortion in a fluid transport system of comparatively simple structure which was mounted on a PCB in a parallel-plate channel($450{\times}80{\times}700mm^3$) accelerates surrounding fluid locally. Input voltages of 20-100V and a resonance frequency of 23Hz were used to vibrate the cooling fan. Input power to the module was 4W. The cooling effect using a PZT fan was larger than that of free convection. Fluid flow around the module were visualized by using PIV system. The temperature distribution around heated module were visualized by using liquid crystal film(LCF). We found that the flow type was y-shaped and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

  • PDF

A Study on the Variation of the Transmission Capacity by External water Cooled System with Trough in Tunnel (전력구트라프내간접수냉방식에서의 송전용량 변화에 관한 연구)

  • 박만흥;조규식;김재근;서정윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.445-458
    • /
    • 1992
  • As one of the forced cooling method of the underground power transmission system, external water cooled system with trough in tunnel was investigated. This study is performed on thermal analysis for a standard condition to determine the cable transmission current of the underground power transmission system about the cooling facility. A parametric study was performed for the inlet water temperatures, flow rates, the inlet air velocities, flow rates and the cooling spans. This study shows that the cable transmission current varies within the allowable limitation in compliance with the variation of inlet water temperatures and flow rates. It exhibits little variations for the most intervals in compliance with the variation of inlet air temperatures and flows. But, the cable transmission current fast reduces for a specified interval and consequently affects the underground transmission system. As a result, when the actual forced cooling system is designed, the design conditions of inlet air have to be considered as the most important parameters in determination of the cable transmission current.

Numerical Study of the Effect of Fan Arrangement on the Cooling Performance of the ONAF Type Radiator for Power Transformer (변압기용 ONAF 방식 방열기의 팬 배치에 따른 냉각특성 연구)

  • Kim, Kuk-Kyeom;Suh, Yong Kweon;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.449-455
    • /
    • 2015
  • Owing to the trend of an increase in capacity and high-efficiency requirement, the life and reliability of power transformer depend significantly on the amount of heat generation per unit volume and the degradation of insulation oil. These problems can be solved by enhancing the cooling performance of the radiator. The purpose of this study was to find a suitable position of fans for a better cooling effect given by the forced-convection of air in an ONAF (Oil Natural Air Forced) type transformer. In the simulation, commercial software was used for flow analysis, and the cooling passage of the oil was simplified to shorten the time taken for computation. With the diameter of the fan fixed at a constant value, the analysis was performed only by changing the position of the fans. As a result, a vertical position change of the fans does not affect the cooling performance significantly. However, the temperature drop given by the fans positioned on the front region of the transformer is larger than that on the rear region.

Cooling Characteristic Analysis of Transformer's Radiator (변압기 냉각 특성 해석)

  • Kim, Hyun-Jae;Yang, Si-Won;Kim, Won-Seok;Kweon, Ki-Yeoung;Lee, Min-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1920-1925
    • /
    • 2007
  • A transformer is a device that changes the current and voltage by electricity induced between coil and core steel, and it is composed of metals and insulating materials. In the core of the transformer, the thermal load is generated by electric loss and the high temperature can make the break of insulating. So we must cool down the temperature of transformer by external radiators. According to cooling fan's usage, there are two cooling types, OA(Oil Natural Air Natural) and FA(Oil Natural Air Forced). For this study, we used Fluent 6.2 and analyzed the cooling characteristic of radiator. we calculated 1-fin of detail modeling that is similar to honeycomb structure and multi-fin(18-fin) calculation for OA and FA types. For the sensitivity study, we have different positions(side, under) of cooling fans for forced convection of FA type. The calculation results were compared with the measurement data which obtained from 135.45/69kV ultra transformer flowrate and temperature test. The aim of the study is to assess the Fluent code prediction on the radiator calculation and to use the data for optimizing transformer radiator design.

  • PDF

A Study on Cooling Characteristics of the LED Lamp Heat Sink for Automobile by Forced Convection (강제대류에 의한 자동차용 램프 방열판의 냉각 특성에 LED 관한 연구)

  • Yang, Ho-Dong;Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.117-123
    • /
    • 2018
  • Automotive headlamps have been continuously developed as one of the most important devices for securing the driver's view, and the LED lamps are getting popular in recent years. However, in case of the LED lamps, because the heat generated by the LED lamps are too high, it shorten the product life and lower the LED efficiency. Therefore, this study was investigated the cooling characteristics of the LED lamp heat sink for automobile by forced convection for LED heat generation control. In order to analyze the cooling characteristics of the heat sink, the temperature distribution results were investigated through the experiment and computational analysis under the increase of the air flow velocity, and the convective heat transfer coefficient was obtained. Also, convective heat transfer coefficient was calculated by the theoretical formula under the same condition and compared with experimental and computational results. From the result of this study, as the air flow velocity around the heat sink fins increased, the convective heat transfer coefficient significantly increased, confirming the improvement in the cooling effect.

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

A Study on the Characteristic of the Thermal Environment in the Cooling System at the Apartment (공동주택 거실의 냉방방식에 따른 열환경 특성에 관한 연구)

  • 이무진
    • Journal of the Korean housing association
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 1999
  • The purpose of this study is to evaluate the efficiency of the thermal environment created by the cooling system at the apartment that combines the forced convection cooling(the system reducing humidity from room) with the floor cooling radiation which uses the floor panel from floor heating system, a general residential heating system in Korea. In this study, the combined cooling system in which air supply, spurt temperature difference and interior draft are reduced, is compared with the existing forced convection cooling system. To identify the effect of the comparison concretely, a comparative experiment is carried out on tour conditions, ie, convection cooling, floor radiation convection cooling and floor radiation cooling. Through it the characteristical thermal environment formed within the model room is analyzed, and the conveying system of compressed floor chill and condensation problem are reviewed.

  • PDF

Numerical study for performance analysis and design of a counterflow type cooling tower (대향류형 냉각탑에 대한 설계 및 성능해석을 위한 수치해석적 연구)

  • 이상윤;이정희;최영기;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.535-549
    • /
    • 1998
  • A numerical study for performance analysis of a counterflow type forced draft tower and natural draft cooling tower has been performed based on the method using the finite volume method with non-orthogonal body fitted and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy balance, moisture fraction balance, water enthalpy balance, and water mass balance equations are solved with Navier-Stoke’s equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study, The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also peformed.

  • PDF

A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection (자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구)

  • Lee, Min;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4072-4080
    • /
    • 2014
  • The Peltier Module has been used to dissipate the heat from electronic devices and electronic components. In this module, a heat sink is used to release the operating heat into the air outside. This study addressed the heat transfer characteristics for a heat sink with an inner tunnel. Under forced and natural convection conditions, the heat transfer characteristics were different. Therefore, the cooling and heating performances were studied for the heat sink, which has an inner tunnel. The heat transfer conditions were also evaluated by performing an experimental test, which investigated the heat transfer characteristics related to the variance in time and temperature distribution. Experiments on the heat transfer characteristics of the heat sink were conducted based on the forced and natural convection and temperature distribution changes. In the cooling experiment, the A- and B-shaped cooling pin heat sinks decreased the temperature of the forced convection than the temperature of natural convection. In the forced and natural convection, the A- and B-shaped decreased to a minimum of $-15^{\circ}C$. Under the forced and natural convection conditions, A- and B-shaped cooling pin heat sinks decreased the temperature when the voltage was increased. In the heating experiment, the A- and B-shaped cooling pin heat sinks increased the temperature of the forced convection than the temperature of natural convection. In forced convection, when the voltage was $15^{\circ}C$, the temperature of the A-shaped cooling pin heat sink increased to $150^{\circ}C$, and the temperature of the B-shaped cooling pin heat sink increased to $145^{\circ}C$. Under forced and natural convection conditions, the A- and B-shaped cooling pin heat sinks showed an increase in temperature with increasing voltage.

Postharvest Quality Changes of Kimchi Cabbage 'Choongwang' Cultivar as Influenced by Postharvest Treatments (저장 전처리 방법에 따른 배추 '춘광' 품종의 품질변화)

  • Eum, Hyang Lan;Bae, Sang Jun;Kim, Byung-Sup;Yoon, Jungro;Kim, Jongkee;Hong, Sae Jin
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.429-436
    • /
    • 2013
  • Kimchi cabbage 'Choongwang' cultivar is mainly cultivated during summer in Gangneung area. 'Choongwang' cultivar was harvested in late July, applied with predrying, room cooling, and forced air cooling, and then packaged with/without 0.02 mm HDPE film to estimate the effect of postharvest treatment on quality characteristics (weight loss, trimming loss, firmness, SSC, color index, sensory evaluation) during 8 week storage at $2^{\circ}C$. Kimchi cabbage without 0.02 mm HDPE film showed high weight loss up to 13-20% while those of with liner were significantly lower. Also forced air cooling among the postharvest treatments was effective to reduce both weight loss and trimming loss. Appearance and freshness in sensory evaluation were the important factors in estimating good quality during storage. Liner treatment with forced air cooling showed highly significant for maintaining appearance and freshness ($P{\leq}0.01$). Color index was no differences between with/without 0.02 mm HDPE film and postharvest treatments. After 6 weeks storage in without 0.02 mm HDPE film with room cooling or control appearance was severely damaged and also internal browning was found. While in with 0.02 mm HDPE film internal browning was found after 8 weeks storage, just in room cooling or predrying treatment.