• 제목/요약/키워드: force-resultant model

검색결과 64건 처리시간 0.024초

Analysis of Electromotive Force Characteristics for Electromagnetic Energy Harvester using Ferrofluid

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.252-257
    • /
    • 2015
  • This paper investigates the concept and implementation of an energy harvesting device using a ferrofluid sloshing movement to generate an electromotive force (EMF). Ferrofluids are often applied to energy harvesting devices because they have both magnetic properties and fluidity, and they behave similarly to a soft ferromagnetic substance. In addition, a ferrofluid can change its shape freely and generate an EMF from small vibrations. The existing energy harvesting techniques, for example those using piezoelectric and thermoelectric devices, generate minimal electric power, as low as a few micro-watts. Through flow analysis of ferrofluids and examination of the magnetic circuit characteristics of the resultant electromagnetic system, an energy harvester model based on an electromagnetic field generated by a ferrofluid is developed and proposed. The feasibility of the proposed scheme is demonstrated and its EMF characteristics are discussed based on experimental data.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

자기장에 의한 강판의 좌굴거동 (Buckling of Steel Plates in Magnetic Fields)

  • 이종세;젱샤오징
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.201-205
    • /
    • 1999
  • An analytical study on the stability of steel plates in the presence of magnetic fields is carried out based on a model which accounts for the nonlinear field-structure interaction. The resultant force system arising from the interaction between the magnetic fields and ferromagnetic plates is derived using the variational principle. The bending and buckling problems of steel plates in oblique magnetic fields are investigated with the aid of the finite element method. Numerical results reveal some interesting features of the magnetoelastic buckling phenomenon.

  • PDF

설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측 (Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions)

  • 강영석;박태춘;강신형
    • 한국유체기계학회 논문집
    • /
    • 제11권6호
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

동역학적 모델링을 통한 편심 회전체의 거동 해석 (Dynamical behavior of the eccentric rotor system using mathematical modeling)

  • 조문갑;조용구;김동원;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.313-318
    • /
    • 2003
  • The vibration of washing machine at spinning cycle is important problem that affects the performance of a product. In this raper, the inner structure of the washing machine is modeled as a rigid body suspension system and transfer farce caused by rotating unbalance mass is obtained using Newton's the 2nd law. and this model is used to predict the verge of walking instability during the spinning cycle. The walk of the drum washing machine is suggested by calculating the force transmissibility between drum and the cabinet. As calculating the resultant force exerted for cabinet, the friction coefficient of the pad is suggested to avoid the walk. In addition, relation between translational slip and rotational slip is derived and method to avoid the rotational slip is introduced.

  • PDF

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Curvature-based analysis of concrete beams reinforced with steel bars and fibres

  • Kaklauskas, Gintaris;Sokolov, Aleksandr;Shakeri, Ashkan;Ng, Pui-Lam;Barros, Joaquim A.O.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.349-365
    • /
    • 2022
  • Steel fibre-reinforced concrete (SFRC) is an emerging class of composite for construction. However, a reliable method to assess the flexural behaviour of SFRC structural member is in lack. An analytical technique is proposed for determining the moment-curvature response of concrete beams reinforced with steel fibres and longitudinal bars (R/SFRC members). The behaviour of the tensile zone of such members is highly complex due to the interaction between the residual (tension softening) stresses of SFRC and the tension stiffening stresses. The current study suggests a transparent and mechanically sound method to combine these two stress concepts. Tension stiffening is modelled by the reinforcement-related approach assuming that the corresponding stresses act in the area of tensile reinforcement. The effect is quantified based on the analogy between the R/SFRC member and the equivalent RC member having identical geometry and materials except fibres. It is assumed that the resultant tension stiffening force for the R/SFRC member can be calculated as for the equivalent RC member providing that the reinforcement strain in the cracked section of these members is the same. The resultant tension stiffening force can be defined from the moment-curvature relation of the equivalent RC member using an inverse technique. The residual stress is calculated using an existing model that eliminates the need for dedicated mechanical testing. The proposed analytical technique was validated against test data of R/SFRC beams and slabs.

미소절삭에서의 절삭력 해석 (An Analysis of Cutting Force in Micromachining)

  • 김동식;강철희;곽윤근
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF