• 제목/요약/키워드: force-displacement coupled mode

검색결과 12건 처리시간 0.024초

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

An Estimate of the Yield Displacement of Coupled Walls for Seismic Design

  • Hernandez-Montes, Enrique;Aschheim, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.275-284
    • /
    • 2017
  • A formula to estimate the yield displacement observed in the pushover analysis of coupled wall lateral force-resisting systems is presented. The estimate is based on the results of an analytical study of coupled walls ranging from 8 to 20 stories in height, with varied amounts of reinforcement in the reinforced concrete coupling beams and walls, subjected to first-mode pushover analysis. An example illustrates the application of these estimates to the performance-based seismic design of coupled walls.

스위칭에 따른 전자기 가진력에 의한 스위치드 릴럭턴스 전동기의 고정자 변위해석 (Stator Displacement Analysis of Switched Reluctance Motor Due to Electromagnetic Force According to Switching)

  • 하경호;홍정표;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.20-26
    • /
    • 2000
  • This paper deals with the modal analysis and the displacement of stator due to electromagnetic forces in Switched Reluctance Motor(SRM). A free-free model of the stator based on structural 3-dimensional Finite Element Method(FEM) is used for investigation the natural frequencies and the mode shapes of the stator. In addition, The displacement caused by magnetic force acting on stator pole is analyzed by the structural FEM coupled with the magnetic force. From these results, the resonance speed is obtained by the relation of the natural frequencies of the harmonic frequencies of magnetic force. And, the eccentricity with respect to rotor is predicted from the analysis result of the mechanical displacement of stator. The natural frequencies of stator are compared with experimental ones measured by modal testing.

  • PDF

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

전단이 RC 교각의 지진성능 및 파괴모드에 미치는 영향 (Influence of shear on seismic performance and failure mode of RC piers)

  • 이도형
    • 공학논문집
    • /
    • 제6권1호
    • /
    • pp.53-63
    • /
    • 2004
  • 본 연구에서는 지진하중을 받는 철근콘크리트 교각의 지진성능 및 파괴모드에 전단이 미치는 영향을 조사하였다. 본 연구에서 개발된 전단-축력간의 상호거동 이력응답 모델의 검증을 위하여 철근콘크리트 기둥 실험에 대한 비교해석을 수행하였다. 비교결과, 예측된 해석치는 전단에 관한 하중-변위 이력응답에 있어서 실험결과와 좋은 상관관계를 보여주었다. 아울러, 본 연구에서 개발된 모델을 이용하여 고베 지진에 의해서 손상된 철근콘크리트 교량의 비선형 시간이력 해석을 수행하였다. 교각의 변위응답에 관한 분석결과, 축력의 변화를 고려한 전단의 영향으로 인하여 최대변위가 상당히 증가하였고, 전반적인 교각 강성의 감소와 함께 진동주기의 증가를 유발한다는 것을 알 수 있었다. 따라서 전단과 축력의 영향을 동시에 고려한 응답에 철근콘크리트 교각의 지진손상 평가에 관해서 보다 나은 설명을 제공할 수 있을 것으로 사료된다.

  • PDF

질량 불평형에 의한 SRM 회전자의 동적 거동에 관한 연구 (Dynamic Behavior of Rotor in Switched Reluctance Motor Due to Unbalanced Mass)

  • 하경호;홍정표;김규택;장기찬
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권5호
    • /
    • pp.305-312
    • /
    • 2000
  • This study deals with the dynamic response of a rotor in Switched Reluctance Motor(SRM) caused by the unbalance force such as the unbalanced mass and electromagnetic force. The method to analyze the mechanical response of the rotor supported on the bearing is based on an extension of the 3-dimensional Transfer Matrix Method(TMM) coupled with the electromagnetic force calculated by Maxwell stress tensor. The displacement of the rotor as a function of frequency according to the position of the unbalanced mass is evaluated from the frequency response function (FRF). The rotor behaviour with the electromagnetic force is compared with that without the electromagnetic force. In addition, the resonance speeds and the vibration modes are analyzed and demonstrated in this paper. These results are useful in designing the mechanical rotor and in balancing properly the rotor to reduce vibration and noise.

  • PDF

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

렌즈 구동을 위한 선형 초음파 전동기 설계 (Design of Linear Ultrasonic Motor for Small tong Actuation)

  • 권태성;이승엽;김수경
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF

초소형 렌즈 구동을 위한 선형 초음파 구동기 설계 (Design of a Linear Ultrasonic Actuator for Small Lens Actuation)

  • 권태성;최요한;이승엽
    • 정보저장시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

직접구동형 서보밸브의 제어기 설계에 관한 연구 (Study for the Controller Design of a Direct Drive Servo Valve)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF