• Title/Summary/Keyword: force-based finite element

검색결과 668건 처리시간 0.028초

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan;Wen Zeng;Wenhao Zhao;Mengting Wang
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.9-24
    • /
    • 2024
  • In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.

Vibration analysis of a multi-span beam subjected to a moving point force using spectral element method

  • Jeong, Boseop;Kim, Taehyun;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, we propose a frequency domain spectral element method (SEM) for the vibration analysis of a multi-span beam subjected to a moving point force. This study is an extension of the authors' previous study for a single-span beam subjected to a moving point force, where the two-element model-based SEM was applied. In this study, each span of a multi-span beam is represented by the Timoshenko beam model and the moving point force is transformed into the frequency domain as a series of each stationary point force distributed on the multi-span beam. The span at which a stationary point force is located is represented by two-element model, but all other spans are represented by one-element models. The vibration responses to a moving point force are obtained by superposing all individual vibration responses generated by each stationary point force. The high accuracy and computational efficiency of the proposed SEM are verified by comparing the solutions by SEM with exact analytical solutions by the integral transform method (ITM) as well as the solutions by the finite element method (FEM).

3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구 (Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements)

  • 오정식;김유일;전석희
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작 (Design and fabrication of micro force sensor using MEMS fabrication technology)

  • 김종호;조운기;박연규;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF

Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition

  • Ghabeli, Asef;Yazdani-Asrami, Mohammad;Doroudi, Aref;Gholamian, S. Asghar
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.400-404
    • /
    • 2015
  • Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.

유한요소법을 이용한 보강롤 구동 4단 냉간압연기에서의 압연하중 및 스트립 두께 예측 (FEM Based Approach to Predict Rolling Force and Strip Thickness in 4-High Cold Rolling Mill Driven by Backup-Roll)

  • 이재현;변상민;박흥식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.129-135
    • /
    • 2009
  • In this paper, a finite element model is presented for the prediction of roll force and strip thickness in a backup-roll-drive mill. The proposed FE model is focused mainly on analyzing the elastic/plastic behavior between a work roll and a strip as well as the rigid/plastic behavior between a backup roll and a work roll. The capability of the proposed model is demonstrated through application to 4-high silicon steel rolling mill at POSCO. Results show that the predicted roll force and strip thickness rolled accurately agree with the measured them. It is also illustrated that the proper position of work roll displaced to one side from the vertical centerline of the backup-roll may be determined by minimizing the horizontal force of work roll.

  • PDF

3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part I : 유한요소해석 (3D Finite Element-based Study on Skin-pass Rolling - Part I : Finite Element Analysis)

  • 윤성진;황상무
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.130-135
    • /
    • 2016
  • Rolled products often have residual stresses or strip waves that are beyond the customer’s tolerance. To resolve this problem, skin-pass rolling is widely used during post-processing of such products. Because a short contact length compared to the strip width is a characteristic of skin-pass rolling, several numerical analyses have been previously conducted based on a two-dimensional approach. In the current study, a series of simulations was conducted using numerical analysis of three-dimensional elastic-plastic finite element method.

엔드밀 가공에서의 공구 변형에 대한 유한요소해석 (A study on Finite Element Analysis of Tool Deformation in End Milling)

  • 김국원;정성찬
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.83-86
    • /
    • 2005
  • 본 연구에서는 절삭 가공시 공구가 받는 절삭력과 칩-공구 사이에서 발생하는 절삭온도에 의한 공구의 변형을 예측하였다. 3D CAD를 이용하여 공구를 모델링 하였으며 절삭력과 절삭온도를 하중조건으로 부여하여 유한요소해석을 수행하였다. 하중조건으로 사용한 절삭력과 절삭온도는 절삭이론을 이용한 절삭력 모델을 사용하여 예측하였으며 실험을 통해 모델의 타당성을 검증하였다. 그러므로 본 연구는 절삭조건과 재료 물성치 그리고 공구 형상만을 알면 이에 따른 절삭력 성분 및 절삭온도 둥을 얻을 수 있고, 이를 이용하여 절삭 가공시 발생하는 공구의 변형을 예측할 수 있다.

  • PDF