• 제목/요약/키워드: force-based

검색결과 6,477건 처리시간 0.034초

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

수상 태양광발전 시스템의 풍력계수 산정에 관한 실험적 연구 (An Experimental Study on the Estimation of Wind Force Coefficient of Floating Type Photovoltaic Energy Generation System)

  • 이영근;이남형;주형중;윤순종
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.60-68
    • /
    • 2013
  • In recent years, green house effect related natural disasters occur throughout the world. Carbon dioxide, mainly comes from the fossil fuel burning, is suspected to be the cause of green house effect. To reduce the emission of carbon dioxide, we need to find alternative energy resources such as photovoltaic energy. In this paper, the basic characteristics of wind force coefficient on a PV panel installed on the floating type PV energy generation system are investigated though the two-dimensional wind tunnel tests. Test variables included the angle of PV panel, direction of wind, number of rows of PV panel and attached or not attached frame. Based on the results obtained through the wind tunnel tests, it was found that the wind force coefficient can be used as a preliminary data in the design of the structure.

전기 유압 매니플레이터의 강건 힘 제어 (Robust Force Control of a 6-Link Electro-Hydraulic Manipulator)

  • 안경관;조용래;양순용;이병룡
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

풍하중에 의한 바지선의 예인 시 거동특성 변화에 관한 연구 (A Study on Towing Characteristics of Barge Considering Wind Force)

  • 남보우;최영명;홍사영
    • 한국해양공학회지
    • /
    • 제29권4호
    • /
    • pp.283-290
    • /
    • 2015
  • This paper presents the results of a numerical study on the towing characteristics of a barge under various wind conditions. First, stability criteria, including the wind force, were derived based on the linear motion equations of a towed vessel. The effect of the wind force on the towing stability was investigated using stability criteria. Next, towing simulations were carried out using a nonlinear time-domain simulation method. In this case, the towline was modeled as a simple spring-damper, and the wind force was computed using the wind coefficient from CFD calculations. Simulations were conducted for a barge under a constant towing speed and constant wind speed conditions. The effect of the wind direction on the slewing motion was also observed. In addition, a series of numerical simulations using variable wind speeds were performed for the present barge with and without a skeg.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구 (Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System)

  • 노경조;김현미;김대휘
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.