• Title/Summary/Keyword: force polygon

Search Result 19, Processing Time 0.023 seconds

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures

  • Liu, Wang;Li, Dong-Xu;Jiang, Jian-Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • A well-designed mesh shape of the cable net is of essential significance to achieve high performance of cable-network antenna reflectors. This paper is concerned with the mesh design problem for such antenna reflector structure. Two new methods for creating the topological forms of the cable net are first presented. Among those, the cyclosymmetry method is useful to generate different polygon-faceted meshes, while the topological mapping method is suitable for acquiring triangle-faceted meshes with different mesh grid densities. Then, the desired spatial paraboloidal mesh geometrical configuration in the state of static equilibrium is formed by applying a simple mesh generation approach based on the force density method. The main contribution of this study is that a general technical guide for how to create the connectivities between the nodes and members in the cable net is provided from the topological point of view. With the new idea presented in this paper, multitudes of mesh configurations with different net patterns can be sought by a certain rule rather than by empiricism, which consequently gives a valuable technical reference for the mesh design of this type of cable-network structures in the engineering.

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

In Newton's proof of the inverse square law, geometric limit analysis and Educational discussion (Newton의 역제곱 법칙 증명에서 기하학적 극한 분석 및 교육적 시사점)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.173-190
    • /
    • 2021
  • This study analyzed the proof of the inverse square law, which is said to be the core of Newton's , in relation to the geometric limit. Newton, conscious of the debate over infinitely small, solved the dynamics problem with the traditional Euclid geometry. Newton reduced mechanics to a problem of geometry by expressing force, time, and the degree of inertia orbital deviation as a geometric line segment. Newton was able to take Euclid's geometry to a new level encompassing dynamics, especially by introducing geometric limits such as parabolic approximation, polygon approximation, and the limit of the ratio of the line segments. Based on this analysis, we proposed to use Newton's geometric limit as a tool to show the usefulness of mathematics, and to use it as a means to break the conventional notion that the area of the curve can only be obtained using the definite integral. In addition, to help the desirable use of geometric limits in school mathematics, we suggested the following efforts are required. It is necessary to emphasize the expansion of equivalence in the micro-world, use some questions that lead to use as heuristics, and help to recognize that the approach of ratio is useful for grasping the equivalence of line segments in the micro-world.

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

The Structural Characteristics of the Temporary Cofferdam in Accordance with the Shape and Size Obtained from Numerical Analysis (유한요소 해석을 통한 형상 및 크기에 따른 가물막이 특성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O;Gwon, Yun-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • These days the circular cross section cofferdam has been frequently used for the earth retaining structures or cut off wall such as ventilating opening, intake tower in cofferdam, shaft for emergency. By the arching effect, the circular cross section type cofferdam has more advantage than a polygon cofferdam in terms of the structural forces and moment. This paper shows the proper approach to analyze the circular cross section cofferdam using 2D Finite Element Method (FEM) for the circular stiffener (ring beam) evaluation. Besides, the various shapes of cofferdam indluding circular cross section have modeled the 3D Finite Element Mothod (FEM). The circular cross section cofferdam shows the minimum reaction force compared with the other shapes of cofferdam.

MBO-Tree: A Hierarchical Representation Scheme for Shapes with Natural Approximation and Effective Localization (MBO-Tree: 형상의 자연스러운 근사화와 효과적인 지역화를 지원하는 계층적 표현 방법)

  • 허봉식;김동규;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • A hierarchical representation scheme for planar curves, MBO-tree, is proposed in this paper, which provides natural approximation and efficient localization. MBO-tree is based on the Douglas-Peucker algorithm (iterative end-point fit algorithm), but approximation errors that are stored with corresponding points in MBO-tree nodes and are used for abstraction measures are adjusted by force to eliminate unnatural approximation. The error adjusting is just making the approximation error of a node in a MBO-tree to be less than or equal to that of its parent. In point of localization, the bounding area of a curve is represented with a minimum bounding octangle (MBO), which can enclose the curve more compactly compared with those of other hierarchical schemes, such as the strip tree, the arc tree and the HAL tree. The MBO satisfies the hierarchical inclusion property that is useful for hierarchical geometrical operations, such as the point-inclusion test and the polygon intersection test. Through several experiments, we found that the proposed scheme was able to approximate more naturally and to localize more effectively.

  • PDF

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.