• 제목/요약/키워드: force formulation

검색결과 368건 처리시간 0.023초

반응표면분석법을 이용한 넙치 첨가 어묵면의 품질 특성 및 제조조건 최적화 (Quality Characteristics and Optimization of Fish-Meat Noodle Formulation Added with Olive Flounder (Paralichthys olivaceus) Using Response Surface Methodology)

  • 오정환;김형광;유가현;정경임;김세종;정준모;천지현;;공창숙
    • 한국식품영양과학회지
    • /
    • 제46권11호
    • /
    • pp.1373-1385
    • /
    • 2017
  • 본 연구에서는 반응표면분석법을 이용하여 어묵면의 주원료인 넙치, 명태, 전분의 함량이 어묵면의 품질에 미치는 영향을 분석하고 어묵면의 배합비를 최적화하였다. 반응모형에서 명태와 넙치의 함량이 높을수록 어묵면의 백색도, 강도, 경도, 파괴강도, 변형도, 씹힘성, 깨짐성, 신장력, 신장거리가 증가하였고, 전분의 함량이 높을수록 감소하거나 그 영향이 미미한 것으로 나타났다. 양식산 넙치를 첨가한 어묵면의 주원료 배합비의 최적조건은 명태, 넙치, 전분의 함량이 각각 명태 72.00 g, 넙치 11.59 g 전분 15.86 g인 것으로 나타났으며, 이때의 만족도는 0.9558이었다, 이들 배합비를 적용하여 넙치 첨가 어묵면을 제조한 결과 백색도는 $59.01{\pm}0.53$, 강도 $708.22{\pm}54.12g/cm^2$, 경도 $1,390.07{\pm}67.70g/cm^2$, 파괴강도 $3,622.77{\pm}92.52g$, 씹힘성 $2,686.94{\pm}103.22g$, 깨짐성 $278,578.31{\pm}10,150.22g$, 신장력 $52.22{\pm}2.97g$, 신장거리 $24.14{\pm}3.55mm$로 나타났다. 이상의 결과로부터 넙치 첨가 어묵면 제조에 있어서 명태, 넙치, 전분의 배합비를 최적화함으로써 품질이 우수한 고부가가치 연제품으로서의 어묵면 제품화가 가능할 것으로 생각된다.

결정 소성학을 이용한 반구 박판 성형공정 전산모사 (Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity)

  • 심정길;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

Analysis of the Pressure Distribution for Press Shoe considering Partially Changed Curvature of Bearing Surface

  • Park, Sang-Shin;Park, Young-Ha;Lee, Young-Ze;Han, Man-Cheol
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.123-124
    • /
    • 2002
  • A press shoe is an element of a machine for squeezing water from wood pulp in the field of manufacturing paper. This is used to compress the pulp enveloped by felt sheet with a large roller. The squeezing force is made by hydraulic pressure. The press shoe has a mechanism similar to a partial hydrostatic bearing. The pressure profile between press shoe and roller affects their squeezing ability, and partial peak pressure can tear the wet pulp. The curvature of the surface of press shoe varies to reduce the peak pressure and increase the mean pressure simultaneously. Therefore, the prediction of pressure distribution considering partially changed curvature of hydrostatic bearing is very important for designing the press shoe. In this study, the difference formulation of Reynolds' equation for partial hydrostatic bearing is by direct numerical method and a computer program to calculate the pressure distribution is developed. We investigate the effect of partially changed curvature of bearing surface on the pressure distribution. Other design parameter for hydrostatic bearing such as depth of pocket and relative velocity are also studied.

  • PDF

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

강도를 고려한 원통형 복합재료 구조물의 최적설계 (Optimal Design of Cylindrically Laminated Composite Shells for Strength)

  • 김창완;황운봉;박현철;신대식;박의동
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.775-787
    • /
    • 1996
  • An optimization procedure is proposed for the design of cylindrically laminated composite shell having midplane symmetry and subjected to axial force, torsion and internal pressure. Tsai-Wu and Tsai-Hill failure criteria are taken as objective functions. The stacking sequence represents the design variable. The optimal design formulation based on state space method is adopted and solution proccedure is described with the emphasis on the method of calculations of the design sensitivities. A gradient projection algorithm is employed for the optimization process. Numerical results are presented for the several test problems.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

드럼 브레이크 시스템의 비정상 열전달 해석 (Unsteady State Heat Transfer Analysis of Drum Brake System)

  • 이계섭;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.172-181
    • /
    • 1999
  • The brakes employed on commercial vehicles must be able to withstand three types of demanding services which are use-emergency stops from high speed, many repeated stops as in a delivery or bus route, and speed control in mountain descents. Two type of friction brakes are in use ; drum breaks and disc brakes. Drum brakes are of the internally expanding type in which two shoes fitted externally with friction material are forced outward against the inside of a rotating drum on the wheel unit. In this case, the Braking power is produced by the friction force between a drum and a lining, and is converted into heat. In this research an unsteady state heat transfer analysis for drum brake system of heavy truck has been performed by ABAQUS/standard code in the case of single-braking and the repeated braking condition. The temperature histories obtained by the finite Element analysis have been compared with the result calculated by the simplified formulation and the result obtained by the experiment of real vehicle conditions.

  • PDF

수치해석을 통한 용접구조물의 구조응력 추정에 관한 연구 (On the Numerical Procedure for Estimating Structural Stress of Welded Structures)

  • 강성원;김명현
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.388-395
    • /
    • 2005
  • A numerical procedure is proposed as a mesh-size insensitive structural stress definition that gives a stress state at a weld toe with relatively large mesh size. The structural stress values obtained using different finite element types, i.e. shell element and solid element, are examined for typical weld structures. The calculation procedures are performed using the balanced nodal forces and moments obtained from finite element solutions. A consistent formulation based on work equivalent argument has been implemented to transform the balanced nodal forces and moments from shell to line force and line moments at each nodal position. The mesh-insensitivity, the effect of distance $\delta$(where the stress is calculated) and the potential limitations of the structural stress method are examined for various types of weldments. Based on the results from this study, it is expected to develop a more precise stress estimation technique for fatigue strength assessment of welded structures.

Comparison of the Quality of the Chicken Breasts from Organically and Conventionally Reared Chickens

  • Kim, Dong-Hun;Cho, Soo-Hyun;Kim, Jin-Hyoung;Seong, Pil-Nam;Lee, Jong-Moon;Jo, Cheor-Un;Lim, Dong-Gyun
    • 한국축산식품학회지
    • /
    • 제29권4호
    • /
    • pp.409-414
    • /
    • 2009
  • In this study, the quality of chicken breasts from organically reared chickens was compared with that of chicken breasts from conventionally reared chickens. Broilers were raised in an indoor pen with conventional and organic production system, respectively. The diet formulation for the organically reared chickens and the production density were in accordance with the guidelines for organic chicken products. Twenty birds from each group were slaughtered and their breasts were obtained for analysis. The organic chicken breasts had a higher cooking loss, and waterholding capacity, and a lower shear force (p<0.05) compared to the conventional chicken breasts. The organic chicken breasts also showed higher $a^{\ast}$ and $b^{\ast}$ values and myoglobin contents compared with the conventional chicken breasts (p<0.05). In the fatty-acid analysis, the organic chicken breasts resulted in higher polyunsaturated fatty acid (PUFA) and unsaturated fatty acid contents, and a higher PUFA-saturated fatty acid ratio.