• Title/Summary/Keyword: force formulation

Search Result 366, Processing Time 0.022 seconds

Efficacy of Flaxseed Flour as Bind Enhancing Agent on the Quality of Extended Restructured Mutton Chops

  • Sharma, Heena;Sharma, Brahma Deo;Mendiratta, S.K.;Talukder, Suman;Ramasamy, Giriprasad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.247-255
    • /
    • 2014
  • Consumers have become very conscious about their nutrition and well being due to changes in their socio-economic lifestyle and rapid urbanization. Therefore, development of technology for production of low cost and functional meat products is urgently required. One such approach is innovative restructuring technology in which binding of meat pieces still remains the main challenge and extension of product is generally associated with poor binding and texture. Thus, the present study was envisaged as an attempt to solve this problem by the incorporation of flaxseed flour (FF) as bind enhancing agent. The FF was used at three different levels viz., 0.5%, 1%, and 1.5% to replace lean meat in pre-standardized restructured mutton chops formulation. The products were subjected to analysis for physico-chemical, sensory and textural properties. Cooking yield, moisture percentage and fat percentage increased with increase in the level of incorporation of FF, however, protein percent and pH decreased with increase in the level of incorporation. Shear force value of product incorporated with 1.5% FF was significantly higher (p<0.01) than control and product containing 0.5% FF level. Among the sensory attributes, product with 1% flaxseed flour showed significantly higher values (p<0.05) for general appearance, binding, texture and overall acceptability. Hardness showed significant increasing (p<0.01) values with increasing levels of incorporation of flaxseed flour, however all other parameters of texture profile analysis showed a decreasing trend. On the basis of sensory scores and physico-chemical properties, the optimum incorporation level of FF was adjudged as 1%. Products incorporated with optimum level of flaxseed flour (1%) were also assessed for water activity and microbiological quality during the storage period of 15 days. It was found that the extended restructured product could be safely stored under refrigeration ($4^{\circ}C{\pm}1^{\circ}C$) in low density polyethylene (LDPE) pouches for 15 days without marked deterioration in sensory and microbiological quality. Thus, it was concluded that flaxseed flour can be used as a good bind enhancing agent in extended restructured meat products at an economic cost.

Nutritional Values of Rice Bran and Effects of Its Dietary Supplementations on the Performances of Broiler Chickens (생미강의 영양적 가치와 사료 내 첨가가 육계 성적에 미치는 영향)

  • Shin Y. K.;Kim K. E.;Shin S. C.;You S. J.;Kim S. K.;An B. K.;Kang C. W.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Two experiments were conducted to evaluate the nutritional values of rice bran and to examine effects of its dietary supplementation on broiler performances. In the first experiment, true metabolizable energy(TME), nitrogen corrected true metabolizable energy(TMEn), and true amino acid availability(TAAA) values of the rice bran were determined by force-feeding sixteen roosters(ISA-Brown). In the second experiment, 3-week-old male broiler chickens(Avian) were divided into four groups and fed each one of four experimental diets containing 0, 5, 10 or 15% rice bran for 21 days. TME and TMEn values of the rice bran(dry matter basis) were 3.25 kcal/g and 3.12 kcal/g, respectively, and the average TAAA value of the 16 amino acids was 76.21%. The average feed intake and body weight gain of the birds fed diets containing rice bran were apparently greater than those of the control group although the differences were not significant statistically. From the results, it can be concluded that feed formulation using bioavailability values, such as TMEn and TAAA, is an effective method for protecting the high variation in growth performances and that rice bran can be used for broiler feeds to 15% without any significant negative effects.

Effect of the Coacervate Systems in Shampoo Formulation on Hair Damage (샴푸의 모발 손상에 대한 코아세르베이트 시스템의 영향)

  • Son, Seong Kil;Kim, See Won;Park, Moo Kyung;Song, Sang-hun;Park, Su Jin;Hwang, Seong-Lok;Lee, Sang Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • The structure of the coacervate can dramatically influence deposition on the hair. The purpose of this study was to investigate the effect of coacervate with a relatively fine and uniform structure on the surface properties of hair and its influence on hair damage. In this study, coacervates of different sizes were explored in 10% shampoo solutions; one solution contained coacervates with non-uniform sizes ($10-300{\mu}m$ average), and the other solution formed a coacervate with a fine and uniform ($1-3{\mu}m$) structure. To study the effect of shampoo on the physical properties of hair and damage to the hair, the hair breakage characteristics, color changes, friction properties, lipid contents and hair surface were examined after using two different types of shampoo. The results clearly show that the relatively fine and uniformly sized coacervate was evenly deposited over the surface of the hair. As a result, the coacervate system can substantially influence the surface properties of the hair such as hair friction, breakage characteristics, and color. The frictional force was dramatically reduced. The use of a fine and uniformly sized coacervate can notably improve hair surface properties. Consequently, hair breakage decreased, and the effect of the coacervate on hair damage was remarkably high.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.