DOI QR코드

DOI QR Code

Effect of the Coacervate Systems in Shampoo Formulation on Hair Damage

샴푸의 모발 손상에 대한 코아세르베이트 시스템의 영향

  • Received : 2018.04.12
  • Accepted : 2018.05.25
  • Published : 2018.06.30

Abstract

The structure of the coacervate can dramatically influence deposition on the hair. The purpose of this study was to investigate the effect of coacervate with a relatively fine and uniform structure on the surface properties of hair and its influence on hair damage. In this study, coacervates of different sizes were explored in 10% shampoo solutions; one solution contained coacervates with non-uniform sizes ($10-300{\mu}m$ average), and the other solution formed a coacervate with a fine and uniform ($1-3{\mu}m$) structure. To study the effect of shampoo on the physical properties of hair and damage to the hair, the hair breakage characteristics, color changes, friction properties, lipid contents and hair surface were examined after using two different types of shampoo. The results clearly show that the relatively fine and uniformly sized coacervate was evenly deposited over the surface of the hair. As a result, the coacervate system can substantially influence the surface properties of the hair such as hair friction, breakage characteristics, and color. The frictional force was dramatically reduced. The use of a fine and uniformly sized coacervate can notably improve hair surface properties. Consequently, hair breakage decreased, and the effect of the coacervate on hair damage was remarkably high.

코아세르베이트의 구조는 모발의 침착에 매우 큰 영향을 줄 수 있다. 본 연구의 목적은 모발의 표면 성질과 모발 손상에 미치는 영향에 대해 상대적으로 미세하고 균일한 구조를 갖는 코아세르베이트의 효과를 조사하였다. 본 연구에서는 10% 농도로 희석한 샴푸 용액에서 크기가 다른 코아세르베이트를 탐구하였다. 하나의 용액은 입자의 크기가 균일하지 않은 코아세르베이트(평균 $10-300{\mu}m$m)를 함유하고, 다른 용액은 미세하고 균일 한 구조(평균 $1-3{\mu}m$)의 코아세르베이트를 형성하였다. 샴푸가 모발의 물리적 성질과 모발 손상에 미치는 영향을 연구하기 위해 두 종류의 샴푸를 사용하여 모발 파괴 특성, 색 변화, 마찰 특성, 지질 함량 및 모발 표면을 조사하였다. 결과는 상대적으로 미세하고 균일한 크기의 코아세르베이트가 모발 표면에 고르게 침착되었음을 명확하게 보여주었다. 결과적으로, 코아세르베이트 계는 모발 마찰, 파손 특성 및 색상과 같은 모발의 표면 성질에 실질적으로 영향을 미칠 수 있다. 마찰력 역시 크게 감소하였다. 미세하고 균일 한 크기의 코아세르베이트의 사용은 현저하게 모발 표면 특성을 향상시킬 수 있다. 결론적으로, 모발 파괴가 감소하였고 코아세르베이트의 모발 손상에 대한 영향은 현저하게 높았다.

Keywords

References

  1. E. Desmond Goddard, Thomas S. Phillips, and Roy B. Hannan, Water soluble polymer-surfactant interaction part I., J. Soc. Cosmet. Chem., 26(9), 461 (1975).
  2. J. A. Faucher, E. D. Goddard, and R. B. Hannan, Sorption and desorption of a cationic polymer by human hair : effect of salt solutions, Textile Res. J., 47(9), 616 (1977). https://doi.org/10.1177/004051757704700906
  3. Y. K. Kamath, C. J. Dansizer, and H. D. Weigmann, Surface wettability of human hair. III. role of surfactants in the surface deposition of cationic polymers, J. Appl. Polymer Sci., 30(3), 1 (1985). https://doi.org/10.1002/app.1985.070300101
  4. J. Caelles, F. Comelles, J. SaNCHEZ Leal, J. L. Parra, and S. Anguera, Anionic and cationic compounds in mixed systems, Cosmet. & Toil., 106, April (1991).
  5. E. D. Goddard, P. S. Leung, and K. P. A. Padmanabhan, Novel gelling structures based on polymer/surfactant systems, J. Soc. Cosmet. Chem., 42(1), 19 (1991).
  6. R. L. Schmitt, Bound Brook, E. D. Goddard, and A. Edison, Investigation into the adsorption of cationic polymers, Cosmet. & Toil., 109, 1 (1994).
  7. P. Hoessel, R. Dieing, R. Noernberg, A. Pfau, and R. Sander, Conditioning polymers in today's shampoo formulations - efficacy, mechanism and test method, Int. J. Cosmet. Sci., 22, 1 (2000). https://doi.org/10.1046/j.1467-2494.2000.00003.x
  8. M. Gamez-Garcia, Controlling the deposition of insoluble actives to hair from shampoo systems, Personal Care, May (2002).
  9. S. Chiron, Performance and sensorial benefits of cationic guar in hair care applications, Cosmet. & Toil., 119, February (2004).
  10. Y. Hiwatari, K. Yoshida, T. Akutsu, M. Yabu, and S. I. Polyelectrolyte, micelle coacervation - effect of coacervate on the properties of shampoo, J. Soc. Cosmet. Chem. Japan, 26(6), (2004).
  11. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. I. Silica Surfaces, Langmuir, 20(5), 1753 (2004). https://doi.org/10.1021/la035626s
  12. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. II. Hydrophobized Silica Surfaces, Langmuir, 20(16), 6692 (2004). https://doi.org/10.1021/la049922w
  13. F. E. Antunes, E. F. Marques, R. Gomes, K. Thuresson, B. Lindman, and M. G. Miguel, Network formation of cationic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification, Langmuir, 20(11), 4647 (2004). https://doi.org/10.1021/la049783i
  14. S. Zhou, C. Xu, J. Wang, P. Golas, and J. Batteas, Phase behavior of cationic hydroxyethyl cellulose-sodium dodecyl sulfate mixtures: effect of molecular weight and ethylene oxide side chain length of polymers, Langmuir, 20(20), 8482 (2004). https://doi.org/10.1021/la049142n
  15. C. Goh, New cationic conditioning polymers for hair care, Asia Pac. Personal Care., September (2005).
  16. R. Y. Lochhead and L. R. Huisinga, A brief review of polymer/surfactant interaction, Cosmet. Toiletries., 119(2), February (2005).
  17. R. Y. Lochhead and L. R. Huisinga, Advances in polymers for hair conditioning shampoos, Cosmet. & Toil., 120(5), May (2005).
  18. W. Li, C. Goh, J. Amos, S. Jordan, A. Theis, and C. Davis, Maximising shampoo performance, Asia Pac. Personal Care, July (2006).
  19. R. Y. Lochhead, L. R. Huisinga, and T. Waller, Deposition from conditioning shampoo: optimizing coacervate formation, Cosmet. & Toil., 121(3), 1, Mar (2006).
  20. T. Nylander, Y. Samoshina, and B. Lindman, Formation of polyelectrolyte-surfactant complexes on surfaces, Adv. Coll. Interf. Sci., 123, 105 (2006).
  21. S. K. Son, H. W. Jeon, I. Lee, and S. Y. Chang, Surface properties of the dried coacervate film affect dry feel of the shampoo composed of cationic polymer and anionic/amphoteric surfactant, J. Soc. Cosmet. Scientists Kor., 38(2), 133 (2012). https://doi.org/10.15230/SCSK.2012.38.2.133
  22. S. Llamas, E. Guzmán, F. Ortega, N. Baghdadli, C. Cazeneuve, R. G. Rubio, and G. S. Luengo, Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Adv. Coll. Interf. Sci., 222, 461 (2015). https://doi.org/10.1016/j.cis.2014.05.007
  23. M. Miyake, Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system, Adv. Coll. Interf. Sci., 239, 146 (2017). https://doi.org/10.1016/j.cis.2016.04.007
  24. S. Thibaut, E. de Becker, B. A. Bernard, M. Huart, F. Fiat, N. Baghdadli, G. S. Luengo, F. Leroy, P. Angevin, A. M. Kermoal, S. Muller, M. Peron, G. Provot, S. Kravtchenko, D. Saint-Léger, G. Desbois, L. Gauchet, K. Nowbuth, A. Galliano, J. Y. Kempf, and I. Silberzan, Chronological ageing of human hair keratin fibres, Int. J. Cosmet. Sci., 32(6), 422 (2010). https://doi.org/10.1111/j.1468-2494.2009.00570.x
  25. M. Korte, S. Akari, H. Kuhn, N. Baghdadli, H. Mohwald, and G. S. Luengo, Distribution and localization of hydrophobic and ionic chemical groups at the surface of bleached human hair fibers, Langmuir, 30, 12124 (2014). https://doi.org/10.1021/la500461y
  26. A. Ribeiro, T. Matam, C. F. Cruz, A. C. Gomes, and A. M. Cavaco-Paulo. Potential of human ${\gamma}D$-crystallin for hair damage repair: insights into the mechanical properties and biocompatibility, Int. J. Cosmet. Sci., 35, 458 (2013). https://doi.org/10.1111/ics.12065
  27. S. Cheng, C. W. M. Yuen, C. W. Kan, and K. K. L. Cheuk, Analysis of keratin fibre damage under various surface treatment conditions, RJTA., 12, 53 (2008).
  28. A. Syed and H. Ayoub, Correlating porosity and tensile strength of chemically modified hair, Cosmet. & Toil., 117(11), 57 (2002).
  29. R. Wagner and I. Joekes, Hair protein removal by sodium dodecyl sulfate, Coll. Surf. B: Biointerf, 41, 7 (2015).
  30. C. Scanavez, M. Silveira, and I. Joekes, Human hair: color changes caused by daily care damages on ultra-structure, Coll. Surf. B: Biointerf, 28, 39 (2003). https://doi.org/10.1016/S0927-7765(02)00129-7
  31. R. Pires-Oliveira and I. Joekes, UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants, Coll. Surf. B: Biointerf, 123, 326 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.035
  32. M. Richena and C.A. Rezende, Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing, J. Photochem. Photobiol. B., 161, 430 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.002