• Title/Summary/Keyword: force density method

Search Result 413, Processing Time 0.031 seconds

Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots (분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열)

  • Cho, Geun Tae;Lee, Jong Hyeon;Nam, Hye Jin;Jung, Duk Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on $TiO_2$ substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

The Proposal for Friction Velocity Formula at Uniform Flow Channel Using the Entropy Concept (엔트로피 컨셉을 이용한 등류수로 마찰속도식 제안)

  • Choo, Tai-Ho;Son, Hee-Sam;Yun, Gwan-Seon;Noh, Hyun-Seok;Ko, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.499-506
    • /
    • 2015
  • The friction velocity is a quantity with the dimensions of velocity defined by the friction stress and density of a wall surface at near wall of flow condition. Also, the friction velocity is the hydraulic parameter describing shear force at the bottom flow. Moreover, it is a very important factor in designing open channel and essential to determine the mixing coefficient in the main flow direction. The estimation of the friction velocity are such as methods using channel slope, linear law of the mean velocity at viscous sub-layer and direct measurement of wall shear stress, etc. In the present study, we propose a friction velocity equation that has been optimized by combining the concept of entropy, which is used in stochastic method, and to verify the proposed equation, the experimental data measured by Song was used. The R squared for friction velocities between proposed equation and friction velocity formula analyzed 0.999 to 1.000 in a very good agreement with each equation.

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Design of Levitation Magnet with Thermal Analysis (열해석을 이용한 자기부상자석의 설계)

  • Bae, Duck-Kweon;Sung, Ho-Kyung;Yoon, Yong-Soo;Bae, Jun-Han;Jho, Jeong-Min;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1185-1186
    • /
    • 2007
  • The UTM-01 developed in 1998 was the first maglev vehicle in Korea for the urban transit maglev (UTM) system. Through the improvement of UTM-01 and development of UTM02, the commercialization of the UTM system is being prepared now. In order to prepare for the commercialization of maglev, it is necessary that an optimal design of the levitation magnet should be provided for the safe operation of the vehicle. The levitation force is formed through the function of magnetic flux density on the top of magnet poles and gap between magnet pole and guide rail. To generate a magnetic field that is high enough to levitate the vehicle, ferromagnetic materials, such as pure iron for magnet pole and SS400 for guide rail, were used. The heat generated by $I^2R$ loss of magnet conductor makes the thermal convection on the surface of magnet including coil and poles. As these two characteristics are nonlinear phenomena, this paper deals with the nonlinear analysis on the magnetic and thermal properties of the U-type levitation magnet by using 3-D finite element method (FEM). Base on the analysis results, a small scale U-type magnet was designed, manufactured, and tested and it was verified that the magnet manufactured was satisfactory to all the design specifications.

  • PDF

A Study on Effect of Pad Design on Assembly and Adhesion Reliability of Surface Mount Technology (SMT) (표면실장기술(SMT)의 조립 및 접합 신뢰성에 대한 패드설계의 영향에 관한 연구)

  • Park, Dong-Woon;Yu, Myeong-Hyeon;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.31-35
    • /
    • 2022
  • Recently, with the 4th industrial revolution, the demand for high-density semiconductors for large-capacity data processing is increasing. Researchers are interested in researching the reliability of surface mount technology (SMT). In this study, the effect of PCB pad design on assembly and adhesion reliability of passive component was analyzed using design of experiment (DOE). The DOE method was established using the pad length, width, and distance between pads of the PCB as variables. The assembly defect rate of the passive element after the reflow process was derived according to the misplacement direction of the chip resistor. The shear force between the passive element and the PCB was measured using shear tests. In addition, the shape of the solder according to the pad design was analyzed through cross-sectional analysis.

Development of a Calculation Model for an Optimal Safe Distance between Ship Routes and Offshore Wind Sites (선박 통항로와 해상풍력단지 간 최적의 이격거리 산정 모델 개발)

  • Ohn, Sung-Wook;Namgung, Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.973-991
    • /
    • 2022
  • Globally, several countries with sea are using eco-friendly energy resources through offshore wind power development by overcoming the weak point of the existing power generation method. The sea has the advantage of being able to develop large scale wind farms in wide waters, but the installation of marine structures threatens the safe operation of vessels. Accordingly, a standard guideline for safe navigation by analyzing the mutual effects between ship routes and offshore wind site was presented by the PIANC. Nonetheless, the standard guideline calculated the same safe distance in all situations. Therefore, this study developed a calculation model for an optimal safe distance between ship routes and offshore wind sites by reflecting the ship's maneuvering, encounter situations, environmental force, traffic density, offshore wind power generators, and channel types. As a result of the validation simulation, the developed model showed that the optimal safe distance was secured.

Temperature dependence of Heteroeptaxial $Y_2O_3$ films grown on Si by ionized cluster beam deposition

  • Cho, M.-H.;Ko, D.-H.;Whangbo, S.W.;Kim, H.B.;Jeong, K.H.;Whang, C.N.;Choi, S.C.;Cho, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.57-77
    • /
    • 1998
  • Heteroepitaxial $Y_2O_3$ films were grown on a Si(111) substrate by ionized cluster beam deposition(ICBD) in ultra high vacuum, and its qualities such as crystllitnity, film stress, and morphological characteristics were investigated using the various measurement methods. The crystallinity was investigated by x-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). Interface crystallinity was also examined by Rutherford backscattering spectroscopy(RBS) channeling, transmission electron microscopy(TEM). The stress of the films was measured by RBS channeling and XRD. Surface and interface morphological characteristics were investigated by atomic force microscopy (AFM) and x-ray scattering method. Comparing the interface with the surface characteristics, we can conclude that many defects at the interface region were generated by interface reaction between the yttrium metal and SiO2 layer and by ion beam characteristic such as shallow implantation, so that they influenced the film qualities. The film quality was dominantly depended on the characteristic temperature range. In the temperature range from $500^{\circ}C$ to $600^{\circ}C$, the crystallinity was mainly improved and the surface roughness was drastically decreased. On the other hand, in the temperature range from $600^{\circ}C$ to $700^{\circ}C$, the compressive stress and film density were dominantly increased, and the island size was more decreased. Also the surface morphological shape was transformed from elliptical shape to triangular. The film stress existed dominantly at the interface region due to the defects generation.

  • PDF

Comparison of carcass and meat quality traits between lean and fat Pekin ducks

  • Ding, Si-Ran;Li, Guang-Sheng;Chen, Si-Rui;Zhu, Feng;Hao, Jin-Ping;Yang, Fang-Xi;Hou, Zhuo-Cheng
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1193-1201
    • /
    • 2021
  • Objective: According to market demand, meat duck breeding mainly includes 2 breeding directions: lean Pekin duck (LPD) and fat Pekin duck (FPD). The aim of the present study was to compare carcass and meat quality traits between 2 strains, and to provide basic data for guidelines of processing and meat quality improvement. Methods: A total of 62 female Pekin ducks (32 LPDs and 30 FPDs) were slaughtered at the age of 42 days. The live body weight and carcass traits were measured and calculated. Physical properties of breast muscle were determined by texture analyzer and muscle fibers were measured by paraffin sections. The content of inosine monophosphate (IMP), intramuscular fat (IMF) and fatty acids composition were measured by high-performance liquid chromatography, Soxhlet extraction method and automated gas chromatography respectively. Results: The results showed that the bodyweight of LPDs was higher than that of FPDs. FPDs were significantly higher than LPDs in subcutaneous fat thickness, subcutaneous fat weight, subcutaneous fat percentage, abdominal fat percentage and abdominal fat shear force (p<0.01). LPDs were significantly higher than FPDs in breast muscle thickness, breast muscle weight, breast muscle rate and breast muscle shear force (p<0.01). The muscle fiber average area and fiber diameter of LPDs were significantly higher than those of FPDs (p<0.01). The muscle fiber density of LPDs was significantly lower than that of FPDs (p<0.01). The IMF of LPDs in the breast muscle was significantly higher than that in the FPDs (p<0.01). There was no significant difference between the 2 strains in IMP content (p>0.05). The polyunsaturated fatty acid content of LPDs was significantly higher than that of FPDs (p<0.01), and FPDs had higher saturated fatty acid and monounsaturated fatty acid levels (p<0.05). Conclusion: Long-term breeding work resulted in vast differences between the two strains Pekin ducks. This study provides a reference for differences between LPD and FPD that manifest as a result of long-term selection.