• Title/Summary/Keyword: force concept

Search Result 772, Processing Time 0.02 seconds

Design of a 6-DOF force reflecting hand controller (힘 반향 6자유도 수동조작기의 설계연구)

  • 변현희;김한성;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1513-1518
    • /
    • 1996
  • A force reflecting hand controller can be used to provide more realistic information to the operator of a teleoperation system such as kinesthetic feedback from a slave robot. In this paper, a new design concept of a force reflecting 6-DOF hand controller utilizing the kinematic structure of a Stewart Platform is presented. Based on the optimal design technique of a Stewart Platform, a force reflecting hand controller has been designed and constructed to verify the technical feasibility of proposed design concept. In order to provide an operator with kinesthetic feedback information, a force mapping algorithm based on a reciprocal product of screws has been introduced. Finally, the technical feasibility of the design concept has been demonstrated through some of experimental results of the device under virtual environment on a real-time graphic system.

  • PDF

Analysis of Contact Force in Eddy-current System Using the Virtual Air-Gap Concept

  • Park, Byung Su;Kim, Hwi Dae;Choi, Hong Soon;Park, Il Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1349-1355
    • /
    • 2015
  • It is difficult to calculate the magnetic force of an object of magnetic material in contact with other objects using the existing methods, such as Maxwell stress tensor method, magnetic charge method, or magnetizing current method. These methods are applicable for force computation only when the object is surrounded by air. The virtual air-gap concept has been proposed for calculating the contact force. However, its application is limited to magneto-static system. In this paper, we present the virtual air-gap concept for contact surface force in the eddy-current system. Its validity and usefulness are shown by comparison between numerical and experimental examples.

Seismic Isolation Design for Bridges on Lead-Rubber Bearings (납-면진받침을 이용한 교량의 면진설계)

  • 이철희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.161-168
    • /
    • 1999
  • The concept of seismic design was induced in our country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently many specialists are enforcing the provisions of seismic design. But because seismic force of seismic design is very great and all the seismic force are concentrated on the fixed bearings and substructure the bearings are the seismic force are concentrated on the fixed bearings and substructure the bearings are destroyed so that seismic design lose its basic concept. In addition when the earthquake which exceeds seismic design force takes place the bridge is collapsed. For these reasons the developed seismic isolation design concept was appeared which diminishes seismic force itself by period shift and additional damping distributes it to each superstructures evenly. Therefore this study introduced the method which combines PC-LEADeR(design program for L.R.B) with SAP 2000(linear elastic analysis) and performs the seismic isolation design more elaborately and simply verified the propriety of that method and examined the force control of L. R. B.

  • PDF

Evaluation of Global Force and Interaction Body Force Density in Permanent Magnet Employing Virtual Air-gap Concept (가상공극개념을 이용한 연구자석의 전체전자기력과 상호체적력밀도 계산)

  • Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.278-284
    • /
    • 2009
  • The global force and interaction body force density were evaluated in permanent magnets by using the virtual air-gap scheme incorporating the finite-element method. Until now, the virtual air-gap concept has been successfully applied to calculate a contact force and a body force density in soft magnetic materials. These force calculating methods have been called as generalized methods such as the generalized magnetic charge force density method, the generalized magnetizing current force density method, and the generalized Kelvin force density method. For permanent magnets, however, there have been few research works on a contact force and a force density field. Unlike the conventional force calculating methods resulting in surface force densities, the generalized methods are novel methods of evaluating body force density. These generalized methods yield the actual total force, but their distributions have an irregularity, which seems to be random distributions of body force density. Inside permanent magnets, however, a smooth pattern was obtained in the interaction body force density, which represents the interacting force field among magnetic materials. To evaluate the interaction body force density, the intrinsic force density should be withdrawn from the total force density. Several analysis models with permanent magnets were tested to verify the proposed methods evaluating the interaction body force density and the contact force, in which the permanent magnet contacts with a soft magnetic material.

Proposal of the Stress Wave Concept and Its Applied Study as a Theory for the Dislocation Formation (전위생성에 대한 이론으로서의 응력파 개념에 대한 제안 및 적용 연구)

  • 서정현
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.449-456
    • /
    • 2001
  • The concept of stress wave was introduced through the quantized kinetic energy which is related to the potentional energy change of atom, molecular bond energy. Differentiated molecular bond energy $\varphi$() by the lst order displacement u becomes force F(F = d$\varphi$($u_i$)/du), if resversely stated, causing physically atomic displacement $u_i$. Such physical phenomena lead stress(force/area of applied force) can be expressed by wave equation of linearly quantized physical property. Through the stress wave concept, formation of dislocation, which could not explained easily from a theory of continuum mechanics, can be explained. Moreover, this linearly quantized stress wave equation with a stress concept for grains in a crystalline solid was applied to three typical metallic microstructures and a simple shape. The result appears to be a product from well treated equations of a quantized stress wave. From this result, it can be expected to answer the reason why the defect free and very fine diameters of long crystalline shapes exhibit ideal tensile strength of materials.

  • PDF

Application of the compressive-force path concept in the design of reinforced concrete indeterminate structures: A pilot study

  • Seraj, Salek M.;Kotsovos, Michael D.;Pavlovic, Milija N.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.475-495
    • /
    • 1995
  • In the past, physical models have been proposed, in compliance with the concept of the compressive-force path, for the realistic design of various statically determinate structural concrete members. The present work extends these models so as to encompass indeterminate RC structural forms. Pilot tests conducted on continuous beams and fixed-ended portal frames have revealed that designing such members to present-day concepts may lead to brittle types of failure. On the other hand, similar members designed on the basis of the proposed physical models attained very ductile failures. It appears that, unlike current design approaches, the compressive-force path concept is capable of identifying those areas where failure is most likely to be triggered, and ensures better load redistribution, thus improving ductility. The beneficial effect of proper detailing at the point of contraflexure in an indeterminate RC member is to be noted.

Magentostrictive self-moving cell linear motor for displacement control with large force and high resolution (대변위-고정밀 위치제어를 위한 자기변형 self-moving cell 선형모터)

  • Doo, Jae-Kyun;Kim, Jae-Hwan;Choi, Seung-Bok;Park, Hong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.249-255
    • /
    • 2000
  • The design and test of an magnetostrictive linear motor(MLM) that operates based on self-moving cell concept is presented. The moving cell is composed of Terfenol-D linear actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses the stroke of Terfenol-D actuators and friction force of the cells, it can essentially produce long stroke and large force. The overall performance of the MLM was measured in terms of speed and force. The pushing force is directly related with the friction force. This work is a proof-of-concept stage and investigation is necessary for realistic application.

  • PDF

A Study on the Integrated Capability Framework for Capability Based Force Structure (능력기반전력구조를 위한 통합능력프레임워크 연구)

  • Park, Sang-Gun;Lee, Tae-Gong;Lim, Nam-Kyu;Son, Hyun-Sik;Kim, Han-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.39-52
    • /
    • 2010
  • DoD makes efforts to develop Capability-Based Force Structure through NCW and requirements. MND makes efforts to develop capability based force development and management for dynamic security environment and wartime command and control, however it seems to be very difficult to develop Capability-Based Force Structure without the concept and development method of integrated capability. The purpose of this paper is to make "An Integrated Capability Framework of Capability Based Force Structure" which presents integral capability of Enterprise. This framework contains the concept of force operation and force development view based on defense force life cycle.

The Future of Republic of Korea Navy : Toward a Korean Way of Naval Strategy (미래 대한민국 해군력 역할과 발전)

  • Choi, Joung-Hyun
    • Strategy21
    • /
    • s.37
    • /
    • pp.65-103
    • /
    • 2015
  • This study is an attempt to look into the future role of the ROKN and to provide a strategic way forward with a special focus on naval strategic concept and force planning. To accomplish this goal, this research takes four sequential steps for analysis: 1) assessing the role and utility of naval power of ROKN since its foundation back in 1945; 2) forecasting features of various maritime threats to influence the security of Korea in the future directly or indirectly; 3) identifying the roles to be undertaken by future ROKN; and 4) recommending Korean way of naval force planning and the operational concept of naval power. This study seeks to show that ROKN needs comprehensive role to better serve the nation with respect to national security, national prosperity and development, and future battle-space management. To safeguard the national security of Korea, it suggests three roles: 1) national guard for the peaceful unification; 2) protector of the maritime sovereignty; and 3) suppressor to maritime threats. Three more roles are highlighted for national prosperity: 1) escort of the national economy; 2) guardian for national maritime activities; and 3) contributor to the world peace. These roles need to be closely connected with the role for the battle-space management. This paper addresses the need for a dramatic shift of the central operational domain from land to maritime in the future. This will eventually offer future ROKN a leading role for developing strategic concept and force planning rather than merely a supporting one. This study finally suggests 'balanced' strategy both in concept development and force planning. A balanced force planning is a 'must' rather than an 'option' when considering a division of function between Task Fleets and Area Fleets, constructing cutting-edge conventional forces such as Aegis destroyer, CVs, or submarines, and the mix of high-profile platform and low-profile when composing future fleets. A 'balance' is also needed in operational concept. The fleet should be prepared to fulfill its missions based on two different types of force operation i.e., coercive or cooperative application of the utility of naval force. The findings and recommendations of the study are relevant today, and will be increasingly important in the future to achieve various political goals required by enhancing the utility of naval power.

An Analysis of Preservice Earth Science Teachers' Mental Models about Coriolis Force Concept (예비 지구과학 교사의 전향력 개념에 대한 정신모형 변화 분석)

  • Kim, Eunju;Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.3
    • /
    • pp.423-434
    • /
    • 2016
  • The purpose of this study is to investigate preservice earth science teachers' mental models through applications of Coriolis force experiment apparatus. After the root of preconception was examined by face to face interviews based on the questionnaire, five preservice earth science teachers were finally selected for this study. The mental models about concept of Coriolis force was classified into naive mental model, static unstable mental model, dynamic unstable mental model, and scientific mental model through the result of individual interviews and their drawings. According to the mental model analysis about Coriolis' force conception, students C and M showed naive mental model about concept of Coriolis force before experiment. After the experiment, student M's model changed to static unstable mental model. Student C's model improved to dynamic unstable mental model. In adiition, students D and O's model improved from static unstable mental model to dynamic unstable mental model. In the case of student B, the dynamic unstable mental model was maintained after the experiment, however, student B's preconception changed to scientific concept. It turned out that a change occurred from low mental model level to integrated mental model after the application of the developed Coriolis' force experiment apparatus. According to the results, national curriculum is similar to static unstable mental model and the result of developed Coriolis' force experiment apparatus is similar to dynamic unstable mental model. It is suggested that it become the theoretical foundation to develop more comfortable and advanced Coriolis force experiment apparatus by improving the experiment apparatus.