• Title/Summary/Keyword: footing concrete

Search Result 87, Processing Time 0.028 seconds

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

A Study on the Behaviors of Column-to-Footing Connections for Concrete Filled Tube(CFT) System (콘크리트 충전 각형강관 주각부의 내력 및 변형에 관한 연구)

  • Kim, Cheol-Hwan;Kim, Seong-Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The purpose of this paper is to investigate the behavior of concrete-filled tube columns for footing connections. Eight specimens were tested to investigate such structural behavior according to the column base type. The specimens consisted of concrete-filled steel tube columns (or bare steel tube columns), reinforced concrete footings, and base plates (or stud connectors). The specimens were subjected to lateral cyclic load. The cyclic load was applied according to a predetermined strength sequence. The results of the experiment indicated that the flexural strength of the stud-connector- type column base is higher than that of the base-plate-type column base. The structural behavior of the concrete-filled tube column base was similar to that of the bare steel column base.

An Analytical Study on the Bond-Properties of Axial Bars Embedded in Massive Concrete (매시브콘크리트에 배근된 주철근의 부착특성에 관한 해석적 연구)

  • 장일영;이호범;이승훈;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.143-147
    • /
    • 1992
  • Description of the behavior of the R.C structural members fixed on massive concrete is not normally generalization of recognized configuration for regular R.C. design guidanes. This can be due to the complexity of evaluation of internal resistancy and deflection changes of the members subjected to the various external forces. On the base of axially loaded member fixed on footing, however, the estimation of deflection changes due to flexural force shear force and rotational force is to be carried out in ways of specifying the bond characteristics of axial bars embedded in massive concrete. This work is to quantify adhesion of steel-concrete, initial concrete cracking stress near bar rib, maximum bond stress and residual stress in concrete respectively. In addition to quantification of them for particulate behavior, the suggestions of multi-linear bond stress-slip diagram made in carrying out finite element analyses for adhesion failure, examining concrete cracking status and reviewing existing experimental data lead to alternatively constructed relationship between bond stress and slip for a axial bars embedded massive concrete.

  • PDF

Thermal Crack Control Using Optimized Steps of Concrete Placement in Massive Concrete Foundation (대형 기초 콘크리트의 분할타설 방법을 고려한 수화열에 의한 온도균열 제어 대책)

  • 김동규;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1169-1174
    • /
    • 2000
  • Since the cement-water reaction in exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volume change associated with the increase and decrease of the temperature with the mass concrete. There thermal stresses will cause temperature-related cracking in mass concrete structure. These typical type of mass concrete include mat foundation, bridge piers, thick wall, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. Temperature and analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. This is paper, the effect of separate placement of thermal crack control footing was analysed by a three dimensional finite element method. As a result, using this method, thermal crack control can be easily performed for structures such as mat structures.

  • PDF

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

Response of a steel column-footing connection subjected to vehicle impact

  • Kang, Hyungoo;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.125-136
    • /
    • 2017
  • This study investigated the performance of a steel column standing on a reinforced concrete footing when it was subjected to collision of an eight-ton single unit truck. Finite element analyses of the structure with different connection schemes were performed using the finite element model of the truck, and the results showed that the behavior of the column subjected to the automobile impact depended largely on the column-footing connection detail. Various reinforcement schemes were investigated to mitigate the damage caused by the car impact. The probability of the model reinforced with a certain scheme to reach a given limit state was obtained by fragility analysis, and the effects of the combined reinforcement methods were investigated based on the equivalent fragility scheme. The analysis results showed that the reinforcement schemes such as increase of the pedestal area, decrease of the pedestal height, and the steel plate jacketing of the pedestal were effective in reducing the damage. As the speed of the automobile increased the contribution of the increase in the number of the anchor bolts and the dowel bars became more important to prevent crushing of the pedestal.

An Experimental Study on the Temperature and Thermal Stresses in Massive Footing and Column (현장조건을 고려한 콘크리트 기초 및 교각구조의 온도 및 열응력에 관한 실험적 연구)

  • 오병환;백신원;엄주용;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.233-237
    • /
    • 1994
  • 매스콘크리트에서는 수화열에 의하여 유발된 높은 온도가 열응력을 일으키는 원인이 되며 구속의 정도에 따라 인장응력이 발생되어 균열이 발생하게 된다. 따라서, 매스콘크리트 타설시 시멘트의 수화열에 의한 균열이 심각한 문제가 된다. 본 연구에서는 매스콘크리트 기초 및 교각구조에 대한 수화열 실험을 통해 온도분포 및 변형분포를 측정하고 이에 대한 온도 및 열응력 해석을 통해 매스콘크리트에 대한 수화열 특성을 규명하였다.

  • PDF

Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete (크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석)

  • 김진근;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.