• Title/Summary/Keyword: foodborne pathogenic microorganism

Search Result 6, Processing Time 0.024 seconds

Analysis of Major Foodborne Pathogens in Various Foods in Korea

  • Kim, Mi-Gyeong;Oh, Mi-Hwa;Lee, Gun-Young;Hwang, In-Gyun;Kwak, Hyo-Sun;Kang, Yun-Sook;Koh, Young-Ho;Jun, Hong-Ki;Kwon, Ki-Sung
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.483-488
    • /
    • 2008
  • Foodborne pathogenic bacteria in various food samples in Korea were monitored and the obtained data was statistically analyzed. A total of 1,240 food samples including 280 sashimi, 244 processed frozen products, 258 kimbab (cooked rice wrapped with seaweed), 337 soybean pastes were obtained from 7 cities including Seoul in Korea. Microorganisms tested were Bacillus cereus, Salmonella spp., Staphylococcus aureus, Escherichia coli, E. coli O157:H7, Vibrio parahaemolyticus, Yersinia enterocolitica, Listeria monocytogenes, Campylobacter jejuni, and Clostridium perfringens. The contaminated microorganisms in food samples were comprised of 10.55% B. cereus, 2.7% S. aureus, 2.0% V. parahaemolyticus, 0.8% C. perfringens, 0.2% Y. enterocolitica, and 0.1% of L. monocytogenes, respectively. Salmonella spp., C. jejuni, and E. coli O157:H7 were not detected in any of the food samples. Particularly, B. cereus that harbors the enterotoxin gene was detected in various foods and regions in Korea, therefore it should be a given special consideration not to allow the hazardous level of contamination.

Microbial Evaluation of Commercially Packed Kimchi Products

  • Kwon, Eun-A;Kim, Myung-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.615-620
    • /
    • 2007
  • Commercially packed kimchi products from 6 different manufacturers, which are exported overseas as well as sold domestically, were analyzed to determine their microorganism distributions and presence of pathogenic bacteria. All samples showed decreasing pH levels (from 5.7-6.2 to 3.9-4.3) and increasing titratable acidities (from 0.3-0.4 to 0.8-1.2%) during 15 days of storage at $4^{\circ}C$. Total bacterial counts ranged from $2.1{\times}10^5-1.9{\times}10^6\;CFU/mL$ in the initial kimchi samples, and then increased to $1.1{\times}10^8-1.8{\times}10^9\;CFU/mL$. The coliform numbers decreased from approximately $2.5{\times}10^2-1.7{\times}10^4\;CFU/mL$ to zero. Major foodborne pathogens such as Salmonella spp., Staphylococcus aureus, Escherichia coli O157:H7, Listeria monocytogenes, Bacillus cereus, Yersinia enterocolitica, and Shigella spp. were not detected in any of the samples. However, 2 out of the 6 samples carried E. coli, emphasizing the need for improved hygiene practice. Interestingly, Hafnia alvei, belonging to the Enterobacteriaceae family, was isolated in all of the samples. Further study is needed on this newly reported bacterium in kimchi.

An ELISA-on-a-Chip Biosensor System for Early Screening of Listeria monocytogenes in Contaminated Food Products

  • Seo, Sung-Min;Cho, Il-Hoon;Kim, Joo-Ho;Jeon, Jin-Woo;Oh, Eun-Gyoung;Yu, Hong-Sik;Shin, Soon-Bum;Lee, Hee-Jung;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2993-2998
    • /
    • 2009
  • An enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor combined with cell concentration technology based on immuno-magnetic separation (IMS) was investigated for use as a potential tool for early screening of Listeria monocytogenes (L. monocytogenes) in food products. The target analyte is a well-known pathogenic foodborne microorganism and outbreaks of the food poisoning typically occur due to contamination of normal food products. Thus, the aim of this study was to develop a rapid and reliable sensor that could be utilized on a daily basis to test food products for the presence of this pathogenic microorganism. The sensor was optimized to provide a high detection capability (e.g., 5.9 ${\times}\;10^3$ cells/mL) and, to eventually minimize cultivation time. The cell density was condensed using IMS prior to analysis. Since the concentration rate of IMS was greater than 100-fold, this combination resulted in a detection limit of 54 cells/mL. The EOC-IMS coupled analytical system was then applied to a real sample test of fish intestines. The system was able to detect L. monocytogenes at a concentration of 2.4 CFU/g after pre-enrichment for 6 h from the onset of cell cultivation. This may allow us to monitor the target analyte at a concentration less than 1 CFU/g within a 9 h-cultivation provided a doubling time of 40 min is typically maintained. Based on this estimation, the EOC-IMS system can screen and detect the presence of this microorganism in food products almost within working hours.

Distribution of Foodborne Pathogens from Garlic Chives and Its Production Environments in the Southern Part of Korea (남부지방 부추와 재배환경의 식품매개병원균의 분포)

  • Jung, Jieun;Oh, Kwang Kyo;Seo, Seung-Mi;Yang, SuIn;Jung, Kyu-Seok;Roh, Eunjung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.477-488
    • /
    • 2020
  • Recently, foodborne illness outbreaks linked to fresh produce are being increasingly reported in the United States, the EU, and Korea as well. Some of this increase may be due to improved surveillance, increase in consumption, change in consumers' habits, and complex distribution systems. Garlic chive is a green, fresh-cut vegetable consumed year-round as a nutrition-rich herb in Korea. It is also prone to contamination with foodborne pathogens during pre-harvest, as amendment with high amounts of livestock manure or compost to soil is required in its cultivation. Our aim in this study was to evaluate microbial contamination of garlic chives, garlic chives cultivation soil, compost, and irrigation water in the southern part of Korea. Samples were collected in A, B, and C regions in 2019 and 2020, and 69, 72, 27, and 40 of garlic chives, soil, compost, and irrigated water, respectively, were analyzed for the presence of sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), Bacillus cereus, Staphylococcus aureus, pathogenic E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. In A, B, and C regions, levels of total aerobic bacteria, coliform, B. cereus, and S. aureus on all samples were between 1.14 and 8.83 log CFU/g, 0.43 and 5.01 log CFU/g, 0.41 and 5.55 log CFU/g, and 1.81 and 6.27 log CFU/g, respectively. B. cereus isolated from garlic chives and environmental samples showed β-hemolysis activity. Incidence of S. aureus in garlic chive and its production environments in 2020 was different from 2019. In this study, B. cereus and S. aureus were the only pathogenic microorganisms detected in all samples. As a result, this work suggests that continuous monitoring in the production and pre-harvest environment is required to improve hthe hygiene and safety of garlic chive.

Bactericidal effect of 461 nm blue light emitting diode on pathogenic bacteria (461nm 청색 LED를 이용한 식중독세균의 살균효과)

  • Do, Jung Sun;Bang, Woo Suk
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.419-423
    • /
    • 2013
  • The objective of this study was to characterize the bactericidal effect of 461nm visible-light LED on three common foodborne bacteria: Escherichia coli O157:H7, Staphylococcus aureus and Vibrio parahaemolyticus. Tests were conducted against pathogen strains that were treated with 461nm LED for 10 h at $15^{\circ}C$. The E. coli (ATCC 43894, ATCC 8739 and ATCC 35150) and the S. aureus (ATCC 27664, ATCC 19095 and ATCC 43300) had average reductions of 2.5, 6.6, 1.5, 2.5 and 2.0 log CFU/mL, respectively, after they were exposed for 10 h to 461nm LED light (p<0.05). In contrast, V. parahaemolyticus (ATCC 43969) had 6 log CFU/mL reductions after it was exposed for 4 h to 461nm LED light. The results showed that both the Gram-positive and Gram-negative bacteria were inactivated with 461nm LED light exposure. Also, the Gram-negative bacteria were more sensitive to the LED treatment than the Gram-positive bacteria. These results show the potential use of 461nm LED as a food preservation and application technology.

Microbial Quality of Fresh Vegetables and Fruits in Seoul, Korea (국내 신선 채소류의 미생물 오염 특성)

  • Hong, Chae-Kyu;Seo, Young-Ho;Choi, Chae-Man;Hwang, In-Suk;Kim, Moo-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • A total of 187 samples of leafy vegetables and fruits were acquired at traditional markets and department stores in Seoul, Korea. Samples were tested for microorganism distributions and for the presence of pathogenic bacteria. The aerobic mesophilic counts ranged between 2.5 and 9.4 log CFU/g, with the highest count recorded from the dropwort. Counts of psychrotrophic microorganisms were as high as those of the mesophilic microorganisms. Total coliform populations between 1.0 and 7.8 log CFU/g were found in 90.9% of the samples. Microbiological counts for fruits were very low. $Escherichia$ $coli$ was isolated in 24 (12.8%) samples. $Staphylococcus$ $aureus$ and $Clostridium$ $perfringens$ contamination were found in 15 (8.0%) and 20 (10.7%) samples. $Salmonella$ species and $Listeria$ $monocytogenes$ were detected in 2.7 and 0.5% of samples, respectively. Among the total 187 samples, 8 samples were contaminated by more than two pathogens. $E.$ $coli$ O157:H7 was not detected in any of the samples. The microbial contamination levels determined in the present study may be used as the primary data to execute microbial risk assessment of fresh vegetables and fruits.