• Title/Summary/Keyword: food borne pathogen

Search Result 73, Processing Time 0.026 seconds

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Inactivation Activity of Bronze Alloy Yugi for Reduction of Cross-Contamination of Food-borne Pathogen in Food Processing (식품제조 환경에서 식품위해세균의 교차오염 감소를 위한 청동합금 유기의 살균효과)

  • Lee, Eun-Jin;Park, Jong-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.4
    • /
    • pp.309-313
    • /
    • 2008
  • To investigate the antibacterial activity of the traditional bronze alloy Yugi, the cultures of Salmonella spp., Escherichia coli O157, Enterobacter sakazakii, and Bacillus cereus were exposed to the metal coupons of bronze, copper, tin, and stainless steel, and the sterilizing activities were analyzed. Antibacterial efficacy of copper coupon toward S. Typhimurium, E. coli, and E. sakazakii were the highest among them and those were followed by bronze, tin, and then stainless steel in the activity order. However, there was little sterilizing activity on Gram-positive B. cereus. Minimal inhibitory concentrations of cupric ion were 25 ppm for S. Typhimurium, E. coli, and E. sakazakii, and 50 ppm for B. cereus. Yugi bronze alloy showed more rigidity and practicality in comparison with copper, and has been used in Korea. Therefore, the bronze alloy may be more effective to reduce the cross-contamination of S. Typhimurium, E. coli, and E. sakazakii than stainless steel in food processing surface.

Inhibitory effects of tuberostemonine on Staphylococcus aureus biofilm (Tuberostemonine에 의한 Staphylococcus aureus의 생물막 억제 효과)

  • Yum, Su Jin;Kim, Seung Min;Kwon, Jun Hyeok;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.241-246
    • /
    • 2022
  • Antibiotic resistance is a serious problem to food safety as well as human healthcare. To avoid this, there are several approaches for a new class of antibiotic agents that target only production of virulence factors such as biofilm without bacterial growth defect. The objective of this study was to investigate the antibiofilm activity of tuberostemonine in Staphylococcus aureus. Tuberostemonine significantly reduced the biofilm formation (26.07-47.02%) in the crystal violet assay whereas there were no effect on S. aureus growth. The dispersion in preformed biofilm was also observed by confocal laser scanning microscopy (CLSM). Quantification real-time PCR revealed that the icaA and agrA expression having an important role in biofilm production of S. aureus were strongly affected with tuberostemonine. These results suggest that tuberostemonine has potential for controlling biofilm formation and dispersion by effect on virulence regulation of S. aureus.

Assessment of Pre-Harvest Environmental Factors in Domestic Production of Organic Lettuce (국내 유기상추의 생산환경 조사분석)

  • Namgung, Min;Kim, Beom Seok;Heo, Seong Jin;Choi, Yong Beom;Hur, Jang Hyun;Park, Duck Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Among pre-harvest environmental factors, increasing attention has been paid to the effects of chemical and microbiological factors on fresh produce. The occurrence and prevalence of these factors have been usually studied with regard to the final products at the post-harvesting stage and/or when they are sold in the market. However, the origin and routes of transmission of both factors remain to be clarified. In the present study, we examined the contamination levels of food-borne pathogens and chemical factors such as pesticide residues and heavy metals in 83 and 43 samples, respectively, including various soil, water, and fertilizer samples, as well as post-harvested and processed samples. Among the organic farming samples, only one pesticide, dimethomorph, was detected in the soil sample, however no pesticides were observed from any other samples in organic farming system. Thus, it was thought that might be contaminated from conventional farm land in the vicinity. Whereas many pesticide residues were detected in conventional farming systems such as soil, fertilizer, water, and fresh produce as expected. Furthermore, heavy metals detected from all tested samples did not shown contamination levels higher than the standard limit. We comparatively assessed the levels of contamination by food-borne pathogens on the samples from organic and conventional farming systems, and found aerobic bacteria at approximately 7 log CFU/g, with no significant differences observed between the two systems. Coliforms were present at lower levels than aerobic bacteria. No human pathogens were present among the coliforms detected, indicating that these bacteria are saprophytes without the ability to cause food-borne illnesses. In contrast, among the high-risk food-borne pathogens, only sporadic cells of Bacillus cereus were found on samples of organic farming system. These data extend previous findings that the most prevalent food-borne pathogen is B. cereus and demonstrate that it spreads to whole living plants via soil.

New Virulence Factors of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Dairy Food Processing

  • Moon, Yong-Il;Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Go, Gwang-woong;Song, Minho;Oh, Sejong;Kim, Sae Hun;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is well-characterized as an important food-borne pathogen worldwide and causes human diseases such as diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) by producing shiga-like toxin (Stx). It has been reported that a number of dairy foods, including cheese, can act as the source of EHEC O157:H7 infections. In addition to the toxicity of Stx, recently it has been indicated that EHEC O157:H7 possesses virulence factors related to attachment, quorum sensing, and biofilms. Moreover, these novel virulence factors might become critical points to be considered in the future production of food derived from animals. Here, we review the evidences that support these insights on new virulence factors and discuss the potential mechanisms mediating the pathogenesis of EHEC O157:H7 in the dairy food industry.

  • PDF

Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method

  • Wang, Xu;Malovichko, Galina;Mendonça, Marcelo;Conceição, Fabricio Rochedo;Aleixo, José AG;Zhu, Xiangdong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.165-168
    • /
    • 2016
  • Surface protein internalin (InlA) is a major virulence factor of the food-borne pathogen L. monocytogenes. It plays an important role in bacteria crossing the host's barrier by specific interaction with the cell adhesion molecule E-cadherin. Study of this protein will help to find better ways to prevent listeriosis. In this study, a monoclonal antibody against InlA was used to detect InlA. The reaction was label-free and monitored in real time with an oblique-incidence reflectivity-difference (OI-RD) technique. The kinetic constants kon and koff and the equilibrium dissociation constant Kd for this reaction were also obtained. These parameters indicate that the antibody is capable of detecting InlA. Additionally, the results also demonstrate the feasibility of using OI-RD for proteomics research and bacteria detection.

A Detection Kit for Aeromonas hydrophila Using Antibody Sensitized Latex

  • Shin, En-Joo;Lee, Soon-Deuk;Lee, Kyung-Won;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.595-598
    • /
    • 2000
  • Aeromonas hydrophila is a pathogen to fish as well as human. It is a food-borne disease, and causes severe mortality in fish, and sometimes severe septicemia in human. In this study, a rapid detection method using latex agglutination has been developed for A. hydrophila. Polyclonal antibodies were raised against membrane and whole cells of three isolates from rainbow trout. Among these, latex particles coated with antibodies raised against whole cells of isolate No. 2 showed the best sensitivity. With latex particles coated with this antibody, we could detect $5{\times}10^4$ CFU of A. hydrophila in 5 min. The cross-reactivity with bacteria constituting the normal intestinal microflora and other pathogens for rainbow trout was insignificant. This latex agglutination assay method produced positive reaction with all clinical isolates of A. hydrophila which were identified by species-specific PCR for 16S rRNA in A. hydrophila.

  • PDF

Antibacterial Activity of Essential Oils from Zanthoxylum piperitum A.P. DC. and Zanthoxylum schinifolium

  • Choi, Soo-Im;Chang, Kyung-Mi;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.195-198
    • /
    • 2008
  • This study was carried out to investigate the potential use of Zanthoxylum schinifolium and Zanthoxylum piperitum A.P. DC. as a source of antimicrobial agents against food borne pathogens. Essential oils of Z. schinifolium and Z. piperitum A.P. DC. were collected by steam distillation and analyzed by GC-MS. The antimicrobial activity of the essential oils was examined using the agar diffusion and micro-dilution assays. The effectiveness of Z. schinifolium essential oil was greater against Bacillus cereus, Staphylococcus aureus, and Vibrio parahaemolyticus than other pathogens, and the minimal inhibitory concentration (MIC) values were 1.25, 2.5, and 1.25, 2.5, and $1.25\;{\mu}g/mL$, respectively. Z. piperitum A.P. DC. essential oil was the most effective against all pathogens tested except for Escherichia coli O157:H7, and the MIC values against B. cereus, Salmonella choleraesuis, and V. parahaemolyticus were 1.25, 2.5, and $1.25\;{\mu}g/mL$, respectively. Limonene, the major component of Z. piperitum A.P. DC. essential oils, had the highest inhibitory activity toward V. parahaemolyticus with a MIC value of $0.15\;{\mu}g/mL$. Meanwhile, citronellal and geranyl acetate, major components of both essential oils, displayed antibacterial activity against only B. cereus with MIC values of 1.25 and $5\;{\mu}g/mL$, respectively. Therefore, these essential oils could be useful as antimicrobial agents against foodborne pathogens.

Isolation and Identification of Bacteriocin-Producing Lactic Acid Bacteria (유용 박테리오신을 생산하는 유산균의 분리와 동정)

  • Hong, Sung Wook;Bae, Hyo Ju;Chang, Jin Hee;Kim, So-Young;Choi, Eun-Young;Park, Beom Young;Chung, Kun Sub;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2013
  • Lactic acid bacteria are microorganisms that are closely associated with human and/or animal environments, and are categorized as generally recognized as safe (GRAS) organisms due to their ubiquitous appearance in foods and their contribution to the healthy microflora of mucosal surfaces. This study was performed to isolate and identify lactic acid bacteria with antagonistic effects against food-borne pathogens. A total of 3,000 acid-producing bacteria were isolated from infant feces, cattle feces, goat feces, dog feces, pig feces, vaginal tracts, vegetables, fruits, Kimchi, Jeotgal, fermented sausages, raw milk, cheese, yogurt, Cheonggukjang, Meju, and Makgeolli cultured on MRS agar with 0.05% bromocresol purple. For the isolation of bacteriocin-producing bacteria, the diameter of the clear zone was measured on MRS agar plates. Twenty-six isolates exhibited strong antibacterial activity against indicator strains such as Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica serovar Enteritidis. Lactic acid bacteria were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus curvatus, Lactobacillus plantarum, and Pediococcus acidilactici by 16S rDNA gene sequence analysis. The results of this study suggest that the isolates could be used as potential probiotic starters for functional food applications.

  • PDF

Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea (유통 수산물에서 분리한 Vibrio parahaemolyticus의 항생제 내성 및 전장 유전체 분석을 통한 유전적 특성 분석)

  • Gyeong Gyu Song;Hyeonwoo Cho;Yeona Kim;Beomsoon Jang;Miru Lee;Kun Taek Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.231-238
    • /
    • 2024
  • Vibrio parahaemolyticus is a major seafood-borne pathogen commonly detected in marine environments. In Korea, V. parahaemolyticus-induced foodborne illnesses account for 7.5% of bacterial pathogen-related food poisonings. Moreover, the amount of antimicrobial agents used in aquatic cultures is continuously increasing. In this study, we isolated V. parahaemolyticus from seafood samples and performed antimicrobial susceptibility tests using the microbroth dilution method. Furthermore, using whole-genome sequencing, we identified antimicrobial resistance genes, virulence genes, and sequence types (STs). We could isolate V. parahaemolyticus from 47 (59.5%) of the 79 seafood samples we purchased from retail markets in Seoul and Chungcheong provinces. Antimicrobial susceptibility tests revealed that 2 and all of the 47 isolates were ampicillin-resistant (4.3%) and susceptible to all tested antimicrobial agents (100%), respectively. The genotype analysis revealed that all isolates carried beta-lactam-, tetracycline-, and chloramphenicol-associated antimicrobial resistance genes. However, we could detect fosfomycin resistance only in one isolate. Concerning the virulence genes, we detected T3SS1 and T3SS2-associated genes in all and one isolate, respectively. However, we could not detect the tdh and trh genes. Of the 47 isolates, 17 belonged to 15 different STs, including ST 658 with 3 isolates. The rest 30 isolates were identified as 25 new STs. The results of this study support the need for operating a continuous monitoring system to prevent foodborne illnesses and the spread of antimicrobial resistance genes in V. parahaemolyticus.