• Title/Summary/Keyword: fog system

Search Result 240, Processing Time 0.028 seconds

Development of Human Detection Technology with Heterogeneous Sensors for use at Disaster Sites (재난 현장에서 이종 센서를 활용한 인명 탐지 기술 개발)

  • Seo, Myoung Kook;Yoon, Bok Joong;Shin, Hee Young;Lee, Kyong Jun
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, a special purpose machine with two manipulators and quadruped crawler system has been developed for rapid life-saving and initial restoration work at disaster sites. This special purpose machine provides the driver with various environmental recognition functions for accurate and rapid task determination. In particular, the human detection technology assists the driver in poor working conditions such as low-light, dust, water vapor, fog, rain, etc. to prevent secondary human accidents when moving and working. In this study, a human detection module is developed to be mounted on a special purpose machine. A thermal sensor and CCD camera were used to detect victims and nearby workers in response to the difficult environmental conditions present at disaster sites. The performance of various AI-based life detection algorithm were verified and then applied to the task of detecting various objects with different postures and exposure conditions. In addition, image visibility improvement technology was applied to further improve the accuracy of human detection.

Model development to design modified atmosphere packaging of Mandarin oranges

  • Kim, Jong-Kyoung;Lee, Sang-Duk;Ha, Young-Sun;Lee, Jun-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.192.1-192
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for Mandarin oranges. Respiratory data at 5, 10, 20$^{\circ}C$ for mandarin oranges were gathered and altered for create useful respiration model. The maximum rate of oxygen uptake increased with increasing temperature. The packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was 30 $\mu\textrm{m}$ and 50 $\mu\textrm{m}$. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. It is concluded that the strategy developed is of use in designing dynamic gas exchange MAP systems, and also has potential uses in similar agricultural products.

  • PDF

A Study on Prevention as result of Controlled-Flight-Into-Terrain Accident - Focusing on Guam accident, Mokpo accident, Gimhae accident (Controlled-Flight-Into-Terrain 항공 사고 예방에 관한 연구 - 괌사고, 목포사고, 김해사고 중심으로 -)

  • Byeon, Soon-Cheol;Song, Byung-Heum;Lim, Se-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • The purpose of this study is leading to prevent the major causes of commercial-aviation fatalities about controlled-flight-into-terrain(CFIT) in approach-and-landing accidents. The paper of major analysis for controlled flight into terrain(CFIT) was Guam accident, Mokpo accident and Gimhae accident in commercial transport-aircraft accidents from 1993 through 2002. CFIT occurs when an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior awareness by the crew. This type of accident can occur during most phases of flight, but CFIT is more common during the approach-and-landing phase. Ninety-five percent of the Guam accident, Mokpo accident, and Gimhae accident where weather was known involved IMC, fog, and rain. The paper believed that prevention for CFIT accident was education and training for flying crew and upgrade for equipment such as EGPWS, and need more research for professional organizations of airlines, and accomplishing precision approaches should be a high priority.

  • PDF

A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft (항공기에서 투하되는 수중운동체의 초기정렬기법 연구)

  • 류동기;김삼수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.

A Study on Artificial Intelligence based Intrusion Detection System for Internet of Things (사물인터넷을 위한 인공지능 기반의 침입 탐지 시스템에 관한 연구)

  • Ryu, Jung Hyun;Kwon, Byung Wook;Suk, Sang Kee;Park, Jong Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.145-148
    • /
    • 2018
  • 클라우드 컴퓨팅 기반 사물인터넷 환경은 급격히 증가하는 통신량, 기종 간 이질성, 지연 시간과 같은 문제점으로 인해 어려움을 겪고 있다. 이를 해결하기 위한 대표적인 방법 중 하나는 분산 모델을 통해 클라우드 컴퓨팅 환경에 집중된 네트워크 또는 컴퓨팅 파워를 분산시키는 포그 컴퓨팅 (Fog Computing) 또는 에지 컴퓨팅 (Edge Computing)을 활용하는 것이다. 그러나 이 분산형 네트워크의 단점을 보완하기 위해 사물인터넷 (IoT, Internet of Things)과 가장 가까이 존재하는 네트워크 모델로써 미스트 컴퓨팅 (Mist Computing)이 탄생하였다. 그러나 다양한 프로토콜에 의해 통신이 이루어지는 사물인터넷 환경에는 수천 가지 제로데이 공격이 존재한다. 이 공격들의 대부분은 이전에 알려진 공격의 작은 변형체이다. 이러한 공격을 효과적으로 막기 위해 사물인터넷 환경에서의 침입 탐지 시스템은 지능적이어야 한다. 따라서 본 논문에서는, 미스트 컴퓨팅 환경에서 새로운 또는 지속적으로 변화하는 사물인터넷 대상 공격을 효과적으로 방어하기 위한 인공지능 기반 침입 탐지 시스템을 제안한다.

ANALYSIS OF THE NODALISATION INFLUENCE ON SIMULATING ATMOSPHERIC STRATIFICATIONS IN THE EXPERIMENT THAI TH13 WITH THE CONTAINMENT CODE SYSTEM COCOSYS

  • Burkhardt, Joerg;Schwarz, Siegfried;Koch, Marco K.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1135-1142
    • /
    • 2009
  • The activities related to this paper are to investigate the influence of nodalisation on simulating atmospheric stratification in the THAI experiment TH13 (ISP-47) with the German containment code COCOSYS. This article focuses on different nodalisations of the vessel dome, where an atmospheric stratification occurred due to a high helium content. The volume of the dome was divided into several levels that were varied horizontally into different geometries. These geometries differ in the number of zones as well as in the existence of zones that enable the direct rise of an ascending steam plume into the vessel dome. Additionally, the vertical subdivision of the vessel dome was increased to simulate density gradients in a more detailed way. It was pointed out that the proper simulation of atmospheric stratifications and their dissolution depends on both a suitable horizontal as well as vertical nodalisation scheme. Besides, the treatment of fog droplets has an influence if their settlement is not simulated correctly. This report gives an overview of the gained experience and provides nodalisation requirements to simulate atmospheric stratifications and their proper dissolution.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

Experimental Study on Spray Performance of Nozzles for Autonomous Fire Fighting Monitor (자율형 소화모니터 노즐의 분사 성능에 대한 실험 연구)

  • Rhyu, SeongSun;Kim, HyoungTae;Seo, JeongHwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.80-88
    • /
    • 2022
  • A systematic experimental study is carried out for the fire fighting monitor nozzle of 65A diameter to design and manufacture a new nozzle with better water spray performance than available domestic nozzles. The nozzle inlet pressure, flow rate and reach for the discharged water from the nozzle are measured by utilizing the experimental facility consisting of two pumps and piping system with a flow meter and pressure gauges. It was found that the baffle position and baffle head chamfering were the most sensitive design factors to be remarkably changed in the flow rate of the discharged water. Also, It was confirmed that the baffle position and the water exit area had the significant effect on the change in reach distance. The results obtained from this study are expected to be used effectively to design new nozzles with excellent spray performances and also to validate numerical analysis results for evaluating the water spray performance of fire fighting monitor nozzles.

Protecting Privacy of User Data in Intelligent Transportation Systems

  • Yazed Alsaawy;Ahmad Alkhodre;Adnan Abi Sen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.163-171
    • /
    • 2023
  • The intelligent transportation system has made a huge leap in the level of human services, which has had a positive impact on the quality of life of users. On the other hand, these services are becoming a new source of risk due to the use of data collected from vehicles, on which intelligent systems rely to create automatic contextual adaptation. Most of the popular privacy protection methods, such as Dummy and obfuscation, cannot be used with many services because of their impact on the accuracy of the service provided itself, they depend on changing the number of vehicles or their physical locations. This research presents a new approach based on the shuffling Nicknames of vehicles. It fully maintains the quality of the service and prevents tracking users permanently, penetrating their privacy, revealing their whereabouts, or discovering additional details about the nature of their behavior and movements. Our approach is based on creating a central Nicknames Pool in the cloud as well as distributed subpools in fog nodes to avoid intelligent delays and overloading of the central architecture. Finally, we will prove by simulation and discussion by examples the superiority of the proposed approach and its ability to adapt to new services and provide an effective level of protection. In the comparison, we will rely on the wellknown privacy criteria: Entropy, Ubiquity, and Performance.

Analysis System for Traffic Accident based on WEB (WEB 기반 교통사고 분석)

  • Hong, You-Sik;Han, Chang-Pyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.13-20
    • /
    • 2022
  • Road conditions and weather conditions are very important factors in the case of traffic accident fatalities in fog and ice sections that occur on roads in winter. In this paper, a simulation was performed to estimate the traffic accident risk rate assuming traffic accident prediction data. In addition, in this paper, in order to reduce traffic accidents and prevent traffic accidents, factor analysis and traffic accident fatality rates were predicted using the WEKA data mining technique and TENSOR FLOW open source data on traffic accident fatalities provided by the Korea Transportation Corporation.