• Title/Summary/Keyword: fog modification

Search Result 5, Processing Time 0.021 seconds

Investigation on Cloud Properties for Fog Modification at Daegwallyeong Mountains (대관령 산악지역 안개조절을 위한 구름특성 조사)

  • Yang, Ha-Young;Oh, Sung-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.45-56
    • /
    • 2005
  • Cloud meteorological properties over Daegwallyeong mountain area were analyzed for experimental cloud seeding which related to a feasibility study of fog modification. The cloud seeding for fog modification has been refocused to using hygroscopic chemical to dissipate warm fog. In this study, the statistics of fog observations were analyzed and discussed. Fog properties mostly showed the Summer warm fog, the early morning occurrences before to 6 o'clock AM, and 7 to 9 o'clock dissipation in the statistics. In the Spring and Winter season an easterly wind produced cold fog which is good applied with AgI seeding agents. Extrapolation of these results suggests that the suitable seeding method and material for fog modification will be introduced from the actual seeding experiments in the cold and warm fog.

Estimation for the Economic Benefit of weather modification (Precipitation Enhancement and Fog Dissipation) (기상조절(인공강우와 안개저감)의 경제적 가치 추정 연구)

  • Lee, Chulkyu;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Jeong, Jin-Yim;Yang, Ha-Young;Seo, Sung-Kyu;Bae, Jin-Young;Kang, Sun-Young;Choi, Young-Jean;Cho, Ha-Man;Choi, Chee-Young
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.187-194
    • /
    • 2010
  • We estimate the economic benefit of weather modification (precipitation enhancement and fog dissipation) by assuming its operation for the considered regions. Based on the statistical data, the economic benefit of the virtually operational precipitation enhancement experiments for the Andong and Imha basins, where the natural precipitation is relatively lack in South Korea, is calculated 348 for the water resources, 22,458 for forest fire prevention, and 28,458 million won/year for the drought relief. The benefit of the fog dissipation operation for the Incheon International Airport is estimated 7,365 million won/year for the flight delay due to fog. The calculated ratio of benefit to cost for precipitation enhancement operation for the basins is 14.07, which is comparable to that conducted in other countries.

Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments (기상조절 실험용 드론의 설계·제작과 활용에 관한 연구)

  • Hae-Jung Koo;Miloslav Belorid;Hyun Jun Hwang;Min-Hoo Kim;Bu-Yo Kim;Joo Wan Cha;Yong Hee Lee;Jeongeun Baek;Jae-Won Jung;Seong-Kyu Seo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.35-53
    • /
    • 2024
  • Under the leadership of the National Institute of Meteorological Sciences (NIMS), the first domestic autonomous flight-type weather modification experimental drone for fog and lower-level cloud seeding was developed in 2021. This drone is designed based on a multi-copter configuration with a maximum takeoff weight of approximately 25 kg, enabling the installation of up to four burning flares for seeding materials and facilitating weather observations (temperature, pressure, humidity, and wind) as well as aerosol (PM10, PM2.5, and PM1.0) particle measurements. This research aims to introduce the construction of the drone and its recent applications over the past two years, providing insights into the experimental procedures, effectiveness verification, and improvement directions of the weather modification drone-based rain enhancement. In particular, partial confirmation of the experimental effects was obtained through the fog dissipation experiment on December 10, 2021, and the lower-level cloud seeding case study on October 5, 2022. To enhance the scope and rainfall amount of weather modification experiments using drones, various technological approaches, including adjustments to experimental altitude, seeding lines, seeding amount, and verification methods are necessary. Through this research, we aim to propose the development direction for weather modification drone technology, which will serve as foundational technology for practical application of domestic rain enhancement technology.

Modification Performance Comparison of SQLite3 Mobile Databases (SQLite3 모바일 데이터베이스의 갱신 성능 비교)

  • Choi, Jin-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1571-1576
    • /
    • 2018
  • Recently, the attractive changes of mobile device are a improvement of the computing performance, dramatic improvement of storage capacity, constant connection to the internet, and sophisticated development of display technology. As a result, database applications utilizing mobile devices are emerging. These applications include databases for mobile servers, databases for edge computing, and fog computing. Therefore, it is important to pay attention to the current mobile database and pay attention to whether it has suitable performance for the applications. In this paper, the most common mobile database, SQLite3 is selected and experimented to test and understand the update performance and characteristics. The results of experiment are compared with the one of Oracle database at the same condition to evaluate the experiment. As a result, Insert Performance of SQLite3 has a lot of points to be improved and Update performance is very good. Especially, the performance of Range Query is excellent.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF