• Title/Summary/Keyword: focused-ion beam lithography

Search Result 23, Processing Time 0.024 seconds

Micropatterning by Low-Energy Focused ton Beam Lithography(FIBL) (저에너지 집속이온빔리소그라피(FIBL)에 의한 미세패턴 형성)

  • 이현용;김민수;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.224-227
    • /
    • 1995
  • The micro-patterning by a Bow energy FIB whish has been conventionally utilized far mask-repairing was investigated. Amorphous Se$\_$75/Gee$\_$25/ resist irradiated by 9[keV]-defocused Ga$\^$+/ ion beam(∼10$\^$15/[ions/$\textrm{cm}^2$]) resulted in increasing the optical absorption, which was also observed also in the film exposed by an optical dose of 4.5${\times}$10$\^$20/[photons/$\textrm{cm}^2$]. The ∼0.3[eV] edge shift for ion-irradiated film was about twice to that obtained for photo-exposed. These large shift could be estimated as due to an increase in disorder from the decrease in the sloop of the Urbach tail. For Ga$\^$+/ FIB irradiation with a relatively low energy, 30[keV] and above the amount of dose of 1.4${\times}$10$\^$16/[ions/$\textrm{cm}^2$], the irradiated region in a-Se$\_$75/Ge$\_$25/ resist was perfectly etched in acid solution for 10[sec], which is relatively a short development time. A contrast was about 2.5. In spite of the relatively low incident energy,∼0.225[$\mu\textrm{m}$] pattern was clearly obtained by the irradiation of a dose 6.5${\times}$10$\^$16/[ions/$\textrm{cm}^2$] and a scan diameter 0.2[$\mu\textrm{m}$], from which excellent results were expected fur incident energies above 50[keV] which was conventionally used in FIBL.

  • PDF

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

Alignment Algorithm for Nano-scale Three-dimensional Printing System (나노스케일 3 차원 프린팅 시스템을 위한 정렬 알고리즘)

  • Jang, Ki-Hwan;Lee, Hyun-Taek;Kim, Chung-Soo;Chu, Won-Shik;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1101-1106
    • /
    • 2014
  • Hybrid manufacturing technology has been advanced to overcome limitations due to traditional fabrication methods. To fabricate a micro/nano-scale structure, various manufacturing technologies such as lithography and etching were attempted. Since these manufacturing processes are limited by their materials, temperature and features, it is necessary to develop a new three-dimensional (3D) printing method. A novel nano-scale 3D printing system was developed consisting of the Nano-Particle Deposition System (NPDS) and the Focused Ion Beam (FIB) to overcome these limitations. By repeating deposition and machining processes, it was possible to fabricate micro/nano-scale 3D structures with various metals and ceramics. Since each process works in different chambers, a transfer process is required. In this research, nanoscale 3D printing system was briefly explained and an alignment algorithm for nano-scale 3D printing system was developed. Implementing the algorithm leads to an accepted error margin of 0.5% by compensating error in rotational, horizontal, and vertical axes.