• 제목/요약/키워드: focus lens

검색결과 226건 처리시간 0.024초

일차원 웨이브렛 변환을 이용한 광학기기의 자동 초점 조절에 관한 연구 (Development of a Wavelet Based Optical Instrument Autofocusing algorithm)

  • 박봉길;김세훈;김윤수;박상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.603-605
    • /
    • 1997
  • A new algorithm using 1-dimensional wavelet transform for autofocusing of optical instrument has been developed. Previous studies based on the conventional frequency analysis have shown that as the lens-object distance approaches the optimum value, the high frequency energy in the corresponding image shows a consistent increase. However, as conventional frequency analysis techniques hide spatial distribution of each band energy, shape information in the original signal cannot be easily utilized. In this paper, a newly devised wavelet based focus measuring scheme is presented. Unlike other frequency domain analysis techniques that simply produce "frequency-only" spectra, wavelet analysis provides a "time-frequency" localized view of a given signal. As a result, both frequency band filtering and spatial distribution filtering can easily be realized. Depending on the proposed focus quality measuring algorithm, a fast and reliable automatic focus adjustment of optical devices could be implemented.

  • PDF

Athermal and Achromatic Design for a Night Vision Camera Using Tolerable Housing Boundary on an Expanded Athermal Glass Map

  • Ahn, Byoung-In;Kim, Yeong-Sik;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.125-131
    • /
    • 2017
  • We propose a new graphical method for selecting a pair of optical and housing materials to simultaneously athermalize and achromatize an LWIR optical system. To have a much better opportunity to select the IR glasses and housing materials, an athermal glass map is expanded by introducing the DOE with negative chromatic power. Additionally, from the depth of focus in an LWIR optical system, the tolerable housing boundary is provided to realize an athermal and achromatic system even for not readily available housing material. Thus, we can effectively determine a pair of optical and housing materials by reducing the thermal shift to be less than the depth of focus. By applying this method to design a night vision camera lens, the chromatic and thermal defocuses are reduced to less than the depth of focus, over the specified waveband and temperature ranges.

Real-time Zoom Tracking for DM36x-based IP Network Camera

  • Cong, Bui Duy;Seol, Tae In;Chung, Sun-Tae;Kang, HoSeok;Cho, Seongwon
    • 한국멀티미디어학회논문지
    • /
    • 제16권11호
    • /
    • pp.1261-1271
    • /
    • 2013
  • Zoom tracking involves the automatic adjustment of the focus motor in response to the zoom motor movements for the purpose of keeping an object of interest in focus, and is typically achieved by moving the zoom and focus motors in a zoom lens module so as to follow the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. Thus, one can simply implement zoom tracking by following the most closest trace curve after all the trace curve data are stored in memory. However, this approach is often prohibitive in practical implementation because of its large memory requirement. Many other zoom tracking methods such as GZT, AZT and etc. have been proposed to avoid large memory requirement but with a deteriorated performance. In this paper, we propose a new zoom tracking method called 'Approximate Feedback Zoom Tracking method (AFZT)' on DM36x-based IP network camera, which does not need large memory by approximating nearby trace curves, but generates better zoom tracking accuracy than GZT or AZT by utilizing focus value as feedback information. Experiments through real implementation shows the proposed zoom tracking method improves the tracking performance and works in real-time.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Focal Reducer for CQUEAN

  • Lim, Ju-Hee;Chang, Seung-Hyuk;Kim, Young-Ju;Kim, Jin-Young;Park, Won-Kee;Im, Myung-Shin;Pak, Soo-Jong
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • The CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera optimized for the observation of high redshift QSOs to understand the nature of early universe. The focal reducer, which is composed of four spherical lens, is allowed to secure a wider field of view for CQUEAN, by reducing the focal length of the system by one third. We designed the lens configuration, the lens barrel, and the adapters to assemble to attach focal reducer to the CCD camera system. We performed tolerance analysis using ZEMAX. The manufacturing of the focal reducer system and its lab test of optical performance were already finished. It turned out that the performance can meet the original requirement, with the aberration and alignment error taken into account. We successfully attached the focal reducer and CQUEAN to the cassegrain focus of 2.1m telescope at McDonald Observatory, USA, and several tests of CQUEAN system were carried out. In this presentation, I will show the process of focal reducer fabrication and the result of performance test.

  • PDF

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.

Optimized Working Distance of a Micro-optic OCT Imaging Probe

  • Kim, Da-Seul;Moon, Sucbei
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.330-335
    • /
    • 2020
  • We have investigated optimization of the working distance (WD) for a highly miniaturized imaging probe for endoscopic optical coherence tomography (OCT). The WD is the axial distance from the distal end of the imaging probe to its beam focus, which is demanded for dimensional margins of protective structures, operational safety, or full utilization of the axial imaging range of OCT. With an objective lens smaller than a few hundred micrometers in diameter, a micro-optic imaging probe naturally exhibits a very short WD due to the down-scaled optical structure. For a maximized WD careful design is required with the optical aperture of the objective lens optimally filled by the incident beam. The diffraction-involved effect was taken into account in our analysis of the apertured beam. In this study, we developed a simple design formula on the maximum achievable WD based on our diffraction simulation. It was found that the maximum WD is proportional to the aperture size squared. In experiment, we designed and fabricated very compact OCT probes with long WDs. Our 165-㎛-thick fiber-optic probes provided WDs of 3 mm or longer w ith reasonable OCT imaging performance.

Autofocus Tracking System Based on Digital Holographic Microscopy and Electrically Tunable Lens

  • Kim, Ju Wan;Lee, Byeong Ha
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2019
  • We present an autofocus tracking system implemented by the digital refocusing of digital holographic microscopy (DHM) and the tunability of an electrically tunable lens (ETL). Once the defocusing distance of an image is calculated with the DHM, then the focal plane of the imaging system is optically tuned so that it always gives a well-focused image regardless of the object location. The accuracy of the focus is evaluated by calculating the contrast of refocused images. The DHM is performed in an off-axis holographic configuration, and the ETL performs the focal plane tuning. With this proposed system, we can easily track down the object drifting along the depth direction without using any physical scanning. In addition, the proposed system can simultaneously obtain the digital hologram and the optical image by using the RGB channels of a color camera. In our experiment, the digital hologram is obtained by using the red channel and the optical image is obtained by the blue channel of the same camera at the same time. This technique is expected to find a good application in the long-term imaging of various floating cells.

카메라 렌즈의 초점을 이용한 이동로봇의 장애물 회피 (Obstacle Avoidance for Mobile Robot using Focus of a Camera Lens)

  • 윤기돈;오성남;한철완;김갑일;손영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.255-257
    • /
    • 2005
  • This paper describes a method for obstacle avoidance and map building for mobile robots using one CCD camera. The captured image from one camera has the feature that some parts where focused look fine but the other parts look blear (this is the out-focusing effect). Using this feature a mobile robot can find obstacles in his way from the captured image. After Processing the image, a robot can not only determine whether an obstacle is in front of him or not, but also calculate the distance from obstacles based on image data and the focal distance of its camera lens. Finally, robots can avoid the obstacle and build the map using this calculated data.

  • PDF

Development of Automatic Visual Inspection for the Defect of Compact Camera Module

  • Ko, Kuk-Won;Lee, Yu-Jin;Choi, Byung-Wook;Kim, Johng-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2414-2417
    • /
    • 2005
  • Compact Camera Module(CCM) is widely used in PDA, Celluar phone and PC web camera. With the greatly increasing use for mobile applications, there has been a considerable demands for high speed production of CCM. The major burden of production of CCM is assembly of lens module onto CCD or CMOS packaged circuit board. After module is assembled, the CCM is inspected. In this paper, we developed the image capture board for CCM and the imaging processing algorithm to inspect the defects in captured image of assembled CCMs. The performances of the developed inspection system and its algorithm are tested on samples of 10000 CCMs. Experimental results reveal that the proposed system can focus the lens of CCM within 5s and we can recognize various types of defect of CCM modules with good accuracy and high speed.

  • PDF