• Title/Summary/Keyword: foaming rate

Search Result 95, Processing Time 0.032 seconds

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Application of a Microcellular Foaming Process of Mixed Materials of LDPE, EVA and Foaming Agent and Estimation of Influence of Each Factor (LDPE, EVA 및 발포제 혼합재료의 초미세 발포 공정 적용과 각 인자의 영향성 평가)

  • Park, Dae-Keun;Cha, Sung-Woon;Hwang, Yun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.853-858
    • /
    • 2001
  • Generally, mixed materials of LDPE, EVA and foaming agent are manufactured by crosslinking foaming or chemical foaming process. Above materials were used in a microcellular foaming injection molding process. Influence of each factor such as injection type, temperature of barrel, rate of mixed materials and contents of foaming agent was estimated by DOE(Design of Experiments). As a result of experiments, injection type and rate of LDPE, EVA have an influence on foaming rate. This data can be used in field of application of LDPE and EVA.

  • PDF

Experimental Studies on the Characteristics of Foaming Mortar(I)- Part 1 characteristics of bulk density and absorption rate - (기포모르터의 제특성에 관한 실험적 연구-제1보 밀도와 흡수율 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 1988
  • This study was performed to obtain the basic data which can be applied to use of foaming mortars. The results obtained were Summarized as follows; 1.At the mixing ratio of 1:1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of bulk densities were increased in richer mixing ratio and more addition of foaming agent. 2.The bulk densities were decreased up to 38.8-55.9% by mix-foaming type and 9.7-23.6% by pre-foamed type than cement mortar. 3.At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of absorption rates were increased in richer mixing ratio and more addition of foaming agent. 4.Absorption rates when immersed in 72hours were showed up tp 3.41-5.85 times by mix-foaming type and 1.05- 1.S5times by pre -foamed type than cement mortar, it was significantly higher at the early stage of immersed time than cement mortar. 5.The correlations between bulk density and absorption rate were highly singnificant, respectively. The multiple regression equations of bulk density and absorption rate were computed depending on a fuction of mixing ratio and addition of foaming agent. it was highly significant respectively.

  • PDF

Properties of Bubble used in Concrete ac cording to Change in Manufacturing Condition

  • Byoungil Kim
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2024
  • This study is a research investigation into the properties of bubbles that affect the characteristics of foamed concrete during its production. The study examined the properties of bubbles based on the manufacturing conditions. To investigate these properties, the selected experimental factors included bead size, the length/diameter ratio of the bubble-generating tube, and compressed air. The experimental design used a design of experiments, and the test results were analyzed using analysis of variance. The foaming agent used to generate bubbles was AES (Alcohol Ethoxy Sulfate), and the method employed for bubble manufacture was the pre-foaming method. In the test results, a significant factor affecting the foaming rate of bubbles was the bead size; the highest foaming rate was observed when using 2mm beads. Bead size also primarily influenced the volume change of the aqueous solution, while other factors did not affect the foaming rate and volume change. None of the factors affected the change in bubble size, but compressed air was considered the main factor affecting bubble size and its change. The foaming rate and volume change of the aqueous solution showed a high correlation with each other. Spherical bubbles in the early stage eventually transformed into angular bubbles. Moreover, over time, it was observed that the bubble size increased.

Study of Sound Absorption & Transmission Characteristics for MCPs Foaming rate by Batch Process (MCPs Closed Cell 의 발포율에 따른 흡차음 특성 연구)

  • 이병희;차성운;강연준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.364-368
    • /
    • 2004
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustic property of Micro Cellular Plastics. This experiment clarify the change of cell foaming rate for foaming time and the change of sound absorption & transmission for foaming rate.

  • PDF

Effects of Blowing and Nucleating Agents on the Foaming Properties of Nylon 6

  • Jung-soo Kim;Sung Yeol Kim
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.65-69
    • /
    • 2023
  • To reduce the weight of the engineering plastic Nylon 6 resin, two high-temperature foaming agents, p-toluenesulfonyl semicarbazide (PTSS) and 5-phenyltetrazole (5-PT) (0-10 phr), were added and foamed without other additives. We investigated the effects of the foaming agent type and content on the foam density (g/cm3) and percent weight reduction rate of the Nylon 6 foam, and 5-PT exhibited better foaming performance than PTSS. In the case of 5-PT, the weight reduction rate was above 36% when the blowing agent content was 1.5 phr or higher, indicating that 5-PT is an effective blowing agent for reducing the Nylon 6 foam weight. Additionally, we studied the effect of the nucleating agent Talc content (0-0.4 phr) on Nylon 6 foaming, and the nucleating agent Talc considerably reduced foaming.

An Experimental Study on Properties of Foam According to Concentration of Vegetable and Mixed Foaming Agent and Properties of Foamed Concrete According to Replacing Ratio of Foaming Agent (식물성 및 혼합 기포제의 농도에 따른 기포 특성과 혼입량에 따른 기포 콘크리트의 물성에 관한 실험적 연구)

  • Jeong, Seong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.22-23
    • /
    • 2016
  • This study analyzes the properties of foam according to the concentration of vegetable foaming agent that is used in traditional and mixed foaming agent of developing stage, and confirms how the foams influence foamed concrete by searching for properties of foamed concrete according to replacing ratio of vegetable foaming agent and mixed foaming agent. This is for the purpose of providing basic data for the use of foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar (기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구)

  • Sung, Chan-Yong;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-61
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

  • PDF

Properties of Bubble According to Types and Concentrations of Concrete Foaming Agent (콘크리트용 기포제 종류 및 농도에 따른 기포의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Oh, Kwang-Chin;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2011
  • Bubbles within the foamed concrete manufactured by pre-foaming method is the main factor which affects the physical properties of foamed concrete such as density, strength, and porosity. Although many researches on foamed concrete have been continuously carried out, insufficient number of researches on the properties related to bubbles in the foamed concrete has been performed except for chemical application related researches. In order to make an optimal foamed concrete, study on the bubble properties must be pursued. In order to effectively implement bubbles in the manufacturing of foamed concrete, the bubble properties must be estimated. In this study, in order to determine the bubble properties, examination of the bubble properties according to types and foaming agent concentration was performed. An foaming agent used for this test were anionic surfactant, rosin, and protein system with the foaming agent concentration range of 0.05~13%. Test parameters considered in the study were foaming rate, foam volume, drainage solution volume, and bubble size. The study results showed that, regardless of foaming agent type, higher concentration of foaming agent showed an increase in the foaming rate. Also, the results showed that concentration of foaming agent affected bubble size, drainage solution volume change, and bubble distributions. With respect to the stability of the bubble, protein foaming agent was better than anion surfactant or rosin foaming agent. With respect to the bubble shape, anion surfactant and rosin formed bubbles had polygon shape where as protein formed bubbles had spherical shape.

A Study on Acoustical Characteristics in Microcellular Foaming Plastics (초미세 발포 플라스틱의 음향특성 연구)

  • Cha, Sung-Woon;Kim, Hak-Bin;Lee, Byoung-Hee;Kang, Yon-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.71-77
    • /
    • 2008
  • Microcellular foaming plastics create a sensation at polymer industrial for lowering product costs and overcoming a lowering of mechanical intensity. Among many advantages, microcellular foaming plastics is well known to have a good acoustical properties. This research based on the experiment of sound absorption and transmission characteristics inquire into acoustical properties of microcellular foaming plastics. Difference of transmission loss of microcellular foaming plastics and solid materials was defined as cell effect. Also, cell effect is expressed by sound reflection and sound absorption. This study is expected to fundamental research to present economical, functional alternative plan for products using sound absorption and transmission materials.