• Title/Summary/Keyword: foaming properties.

Search Result 333, Processing Time 0.029 seconds

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

An Experimental Study on the Performance Evaluation of Lightweight Foamed Concrete According to Size and Replacing Ratio of Artificial Lightweight Aggregate (인공경량골재 크기 및 혼입량에 따른 경량기포콘크리트의 물리적 성능 평가에 관한 실험적 연구)

  • Jeong, Seong-Min;Yun, Chang-Yeon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.162-163
    • /
    • 2017
  • This study investigated the properties of lightweight foamed concrete by using synthetic foaming agent and artificial lightweight aggregate. The effects of artificial lightweight sizes on the compressive strength, density and pore structure of the concrete were investigated. The samples were assessed by MIP analysis and simultaneous SEM was used to study their pore distribution. This study showed the improvement of important properties of lightweight foamed concrete. Lower pore distribution and correspondingly higher compressive strength values were reached. This is for the purpose of providing basic data for the use of lightweight foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF

A Study of the Foaming Poperties of Mungbean Protein Isolate (녹두 단백질의 기포특성에 관한 연구)

  • 민성희;손경희
    • Korean journal of food and cookery science
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 1988
  • This study was carried out in order to study the foaming properties of mungbean protein. Mungbean protein isolate was tested for the purpose of finding out the effect of pH, addition of sucrose on foaming properties. The results were summarized as follows: 1. Foam expansion values were generally depen. dent on protein concentration to 3% protein suspension. From 1% to 3% suspension, foam expansion values increased. However over 3% suspension, the values decreased. In 1% mungbean protein suspension, the foam expansion value of suspension at pH 4.5 was greater than that of at pH9. In 3%, 5%, and 10% suspensiona the foam expansion values of suspension at pH 7 was the lowest. Foam expansion value significantly decreased by the addition of sucrose. 2. The foam stability appeared the greatest value as protein concentration increased. It appeared the greatest value at pH 4.5. When sucrose was added, the foam stability increased. The more sucrose was added, the better foam stability was.

  • PDF

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

A Study on the Sound Absorption Properties of Foamed Concrete According to Dilution Ratio of Foaming Agent (기포제 희석비율에 따른 기포콘크리트의 흡음특성에 관한 연구)

  • Kang Ki-Woong;Kang Chul;Kim Ha-Seok;Kwag Eun-Gu;Kwon Ki-Joo;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.5-8
    • /
    • 2005
  • Sound absorbing performance is affected by porosity and continuity of void, therefore it is important to maintain stabilization of foam and to analyze properties of void pore in hardened state. The purpose of this study is to analyze the sound absorption properties and void characteristic of foamed concrete according to dilution ratio of foaming agent. The results of this experiment were as follows. It is determined that an increase in total and continuous void ratio is achieved by increasing of dilution ratio, and a shorter absorbing time was exhibited at a higher continuous void ratio. When the average void size of foamed concrete was below 1.5mm, the tendency of sound absorption coefficient compared with general sound absorber was appeared similarly.

  • PDF

The Effect of Thickening Agent on Foaming and Mechanical Properties of A356 Alloy (A356 합금의 발포 특성 및 기계적 성질에 미치는 점증제의 영향)

  • Tak, Byeong-Su;Kim, Byeong-Gu;Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.241-246
    • /
    • 2010
  • The viscosity of foam metal is necessary to get the pores, but it is difficult to manufacture net-shape foam, because the fluidity decreases by increasing viscosity. In this study, the A356 alloy which has good fluidity and less defect was selected and fabricated to foam metal. To understand about effect of thickening agent on foaming and mechanical properties, quantity of thickening agent was changed. The pore size, porosity and distribution of foam metal were measured by i-solution program. And compression test were performed by UTM. In case of 3.0wt% Ca in thickening agent, it is found that most of foam consist of homogeneous shape, and the growth height had the highest value of 204 mm in the all fabricated foams. The porosity was 93% and compressive strength was 3.1 MPa. In the microstructure, the $Al_2Si_2Ca$ intermetallic compound and Ti were observed. The vickers hardness value rose with increasing viscosity value.

Structure and Foaming Properties of Viscous Exopolysaccharides from a Wild Grape-Associated Basidiomycetous Yeast Papiliotrema flavescens Formerly Known as Cryptococcus flavescens

  • Oluwa, Salomon Woye
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1739-1749
    • /
    • 2020
  • Exopolysaccharide produced by the yeast Papiliotrema flavescens, isolated from wine grape berries of Champagne vineyard, was investigated for both chemical and functional characterization. SECMALLS and colorimetric assay analyses showed that the EPS is a high MW heteropolymer (2.37 × 106 g/mol) majorily consisting of mannose, glucose, xylose and glucuronic acid as monosaccharide constituents, with two substituents (sulphate and phosphate groups), and a minor protein moiety. Structural enchainment of these carbohydrates based on methylation, GC-MS and NMR analyses revealed a linear main backbone built up of α-(1 → 3)-D-mannopyranosyl residues on which are branched side chains consisting of a single β-D-glucopyranosyluronic acid residue and β-(1 → 2)-xylopyranoses (2-5 residues). Suggestion of some xylopyranose side chains containing a mannose residue at the nonreducing terminal end was also proposed. This is first report on EPSs from the grape P. flavescens yeast with such structural characteristics. Furthermore, investigations for valuating the application performance of these EPS in relation with their structural features were carried out in 8% alcohol experiment solutions. Very exceptional viscosifying and foaming properties were reported by comparison with commercial biopolymers such as Arabic, gellan and xanthan gums. The intrinsic properties of the natural biopolymer from this wild grape-associated P. flavescens yeast make it a potential candidate for use in various biotechnology applications.

Anti-Foaming Properties of Polypropylene Glycol Oleates (올레산 폴리프로필렌글리콜 에스테르류의 소포특성)

  • Li, Hai-Yan;Choi, Hyoung-Chul;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • In this study, by using oleic acid and polypropylene glycol, good natured antifoaming agent for suitable electronics process under the alkaline conditions were synthesized. For the synthesized mono and diesters, acid value, hydroxyl value was measured, and identified by FT-IR and $^1H-NMR$ spectroscopy. Surface properties such as surface tension, critical micelle concentration(cmc) for diluted aqueous solution was measured, and tested the antifoaming properties according to the difference of alkyl chain length, various concentration, temperature and pH. The surface tension of synthesized antifoaming agent, PPMO(Polypropylene glycol monooleate) was 24.3 dyne/cm, PPDO(Polypropylene glycol dioleate) was 23.7 dyne/cm. By increasing of the alkyl chain length, surface tension was decreased slightly, and showed good antifoaming properties at 0.06 wt% concentration and $50^{\circ}C$, pH 11. These synthesized compounds are expected to apply as a suitable antifoaming agents in the semiconductor and the PCB(Printed Circuit Board) manufacturing process.

Effects of Combination Treatments of Nisin and High-intensity Ultrasound with High Pressure on the Functional Properties of Liquid Whole Egg

  • Lee, Dong-Un
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1511-1514
    • /
    • 2009
  • Liquid whole egg (LWE) was subjected to high hydrostatic pressure (HHP), a consecutive combination of nisin and HHP (nisin-HHP), or a consecutive combination of ultrasound and HHP (ultrasound-HHP), and functional properties of processed LWE were compared to those of raw LWE. Little changes in foaming and emulsifying properties were observed by the application of HHP alone and the combined process of nisin and HHP. In contrast, ultrasound-HHP combination resulted in significant changes in color, foaming, and emulsifying properties. The maintenance of functional properties after HHP treatment agreed with expectation, because the HHP processing condition had been selected where minimal rheological changes had occurred.